메뉴 건너뛰기




Volumn 12, Issue 32, 1998, Pages 3457-3463

Impurity entropy for the two-channel Kondo model

Author keywords

[No Author keywords available]

Indexed keywords


EID: 2542593184     PISSN: 02179792     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0217979298002805     Document Type: Article
Times cited : (14)

References (11)
  • 4
    • 4244208964 scopus 로고
    • N. Andrei and C. Destri, Phys. Rev. Lett. 52, 364 (1984); A. M. Tsvelik and P. B. Wiegmann, J. Stat. Phys. 38, 125 (1985); A. M. Tsvelik, J. Phys. C18, 159 (1985); P. D. Sacramento and P. Schlottmann, Phys. Lett. A142, 245 (1989).
    • (1984) Phys. Rev. Lett. , vol.52 , pp. 364
    • Andrei, N.1    Destri, C.2
  • 5
    • 0642327178 scopus 로고
    • N. Andrei and C. Destri, Phys. Rev. Lett. 52, 364 (1984); A. M. Tsvelik and P. B. Wiegmann, J. Stat. Phys. 38, 125 (1985); A. M. Tsvelik, J. Phys. C18, 159 (1985); P. D. Sacramento and P. Schlottmann, Phys. Lett. A142, 245 (1989).
    • (1985) J. Stat. Phys. , vol.38 , pp. 125
    • Tsvelik, A.M.1    Wiegmann, P.B.2
  • 6
    • 0000234632 scopus 로고
    • N. Andrei and C. Destri, Phys. Rev. Lett. 52, 364 (1984); A. M. Tsvelik and P. B. Wiegmann, J. Stat. Phys. 38, 125 (1985); A. M. Tsvelik, J. Phys. C18, 159 (1985); P. D. Sacramento and P. Schlottmann, Phys. Lett. A142, 245 (1989).
    • (1985) J. Phys. , vol.C18 , pp. 159
    • Tsvelik, A.M.1
  • 7
    • 0000356786 scopus 로고
    • N. Andrei and C. Destri, Phys. Rev. Lett. 52, 364 (1984); A. M. Tsvelik and P. B. Wiegmann, J. Stat. Phys. 38, 125 (1985); A. M. Tsvelik, J. Phys. C18, 159 (1985); P. D. Sacramento and P. Schlottmann, Phys. Lett. A142, 245 (1989).
    • (1989) Phys. Lett. , vol.A142 , pp. 245
    • Sacramento, P.D.1    Schlottmann, P.2
  • 9
    • 0000550675 scopus 로고
    • I. Affleck and A. W. W. Ludwig, Phys. Rev. Lett. 67, 161 (1991); A. W. W. Ludwig, Int. J. Mod. Phys. B8, 4, 1 (1994).
    • (1994) Int. J. Mod. Phys. , vol.B8 , Issue.4 , pp. 1
    • Ludwig, A.W.W.1
  • 11
    • 85034463646 scopus 로고    scopus 로고
    • note
    • The first limit corresponds to the cooling experiment with a sample of fixed size. By cooling it low enough we have to see log of some integer. The second limit corresponds to another set of experiments when many samples of increasing size are studied at the fixed temperature. In this case there is no fundamental restriction on the limiting value of the entropy as well as that limiting value does not any fundamental meaning.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.