메뉴 건너뛰기




Volumn 66, Issue 1, 2004, Pages 1-20

A geometrical approach to quantum holonomic computing algorithms

Author keywords

Connections; Dynamical systems; Grassmann manifolds; Holonomy groups; Lax type integrable flows; Quantum algorithms; Quantum computers; Symplectic structures

Indexed keywords

ALGORITHMS; MATHEMATICAL OPERATORS; MATHEMATICAL TRANSFORMATIONS; POLYNOMIALS; PROBLEM SOLVING; QUANTUM THEORY;

EID: 2542497040     PISSN: 03784754     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matcom.2004.01.017     Document Type: Article
Times cited : (7)

References (31)
  • 3
    • 84966232225 scopus 로고
    • A theorem on holonomy
    • Ambrose W., Singer J., A theorem on holonomy. Trans. AMS. 75:1953;428-443.
    • (1953) Trans. AMS , vol.75 , pp. 428-443
    • Ambrose, W.1    Singer, J.2
  • 4
    • 0011021669 scopus 로고
    • Lax type flows on Grassmann manifolds
    • Bloch A.M., Lax type flows on Grassmann manifolds. Contemp. Math. 68:1987;39-50.
    • (1987) Contemp. Math. , vol.68 , pp. 39-50
    • Bloch, A.M.1
  • 5
    • 84968518129 scopus 로고
    • A completely integrable Hamiltonian systems associated with line fitting in complex vector space
    • Bloch A.M., A completely integrable Hamiltonian systems associated with line fitting in complex vector space. Bull. AMS. 12:1985;250-256.
    • (1985) Bull. AMS , vol.12 , pp. 250-256
    • Bloch, A.M.1
  • 6
    • 0002385192 scopus 로고    scopus 로고
    • The integrability of Lie-invariant geometric objects generated by ideals in Garssmann algebras
    • Blackmore D.L., Prykarpatsky Y.A., Samulyak R.V., The integrability of Lie-invariant geometric objects generated by ideals in Garssmann algebras. J. Nonlinear Math. Phys. 5:1998;54.
    • (1998) J. Nonlinear Math. Phys. , vol.5 , pp. 54
    • Blackmore, D.L.1    Prykarpatsky, Y.A.2    Samulyak, R.V.3
  • 10
    • 0002087301 scopus 로고
    • On a connection governing transport along (2 + 2)-density matrices
    • Dittmann J., Rudolph G., On a connection governing transport along (2 + 2)-density matrices. J. Geometry Phys. 10:1992;93-106.
    • (1992) J. Geometry Phys. , vol.10 , pp. 93-106
    • Dittmann, J.1    Rudolph, G.2
  • 12
    • 2542440704 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, The Netherlands
    • L.D. Faddeev, L.A. Takhtadjan, Hamiltonian Approach in the Soliton Theory, Springer, New York, 1986; Manifolds: Classical and Quantum Aspects, Kluwer Academic Publishers, The Netherlands, 1998.
    • (1998) Manifolds: Classical and Quantum Aspects
  • 13
    • 0009537426 scopus 로고    scopus 로고
    • arXiv:quant-ph/0005129, 31 May
    • K. Fujii, More on Optical Holonomic Quantum Computer, arXiv:quant-ph/0005129, 31 May 2000; From Geometry to Quantum Computation, 26 May 2001 (quant-ph/0107128).
    • (2000) More on Optical Holonomic Quantum Computer
    • Fujii, K.1
  • 14
    • 2542503602 scopus 로고    scopus 로고
    • 26 May (quant-ph/0107128)
    • K. Fujii, More on Optical Holonomic Quantum Computer, arXiv:quant-ph/0005129, 31 May 2000; From Geometry to Quantum Computation, 26 May 2001 (quant-ph/0107128).
    • (2001) From Geometry to Quantum Computation
  • 15
    • 0011033278 scopus 로고
    • Report AMPR-9103, CWI, Amsterdam, The Netherlands, March
    • M. Hazewinkel, Riccati and soliton equations, Report AMPR-9103, CWI, Amsterdam, The Netherlands, March 1995.
    • (1995) Riccati and Soliton Equations
    • Hazewinkel, M.1
  • 16
    • 0001647886 scopus 로고
    • On the geometry of soliton equations
    • Magri F., On the geometry of soliton equations. Acta Applic. Math. 41:1995;247-270.
    • (1995) Acta Applic. Math. , vol.41 , pp. 247-270
    • Magri, F.1
  • 21
    • 0010954551 scopus 로고    scopus 로고
    • The finite dimensional Moser type reductions of modified Boussinesq and super Korteweg de Vries Hamiltonian systems via gradient holonomic algorithm and dual moment maps
    • T.L. Gill (Ed.), Institute for Basic Research, Monteroduni, Italy, Hadronic Press
    • A.K. Prykarpatsky, D.L. Blackmore, O.Y. Hentosh, The finite dimensional Moser type reductions of modified Boussinesq and super Korteweg de Vries Hamiltonian systems via gradient holonomic algorithm and dual moment maps, in: T.L. Gill (Ed.), Proceedings of the International Conference on New Frontiers in Physics, vol. 11, Institute for Basic Research, Monteroduni, Italy, Hadronic Press, 1996, pp. 271-292.
    • (1996) Proceedings of the International Conference on New Frontiers in Physics , vol.11 , pp. 271-292
    • Prykarpatsky, A.K.1    Blackmore, D.L.2    Hentosh, O.Y.3
  • 22
    • 2542428489 scopus 로고    scopus 로고
    • AGH Publisher, Krakow
    • A.K. Prykarpatsky, Quantum Mathematics and its Applications. Part 1. Automatyka, vol. 6, AGH Publisher, Krakow, 2002, No. 1, pp. 234-2412; Quantum Mathematics: Holonomic Computing Algorithms and Their Applications. Part 2. Automatyka, vol. 7, No. 1, 2004.
    • (2002) Quantum Mathematics and Its Applications. Part 1. Automatyka , vol.6 , Issue.1 , pp. 234-2412
    • Prykarpatsky, A.K.1
  • 24
    • 21344476481 scopus 로고
    • Symplectic manifolds, coherent states and semiclassical approximation
    • Rajeev S.G., Kalyana R.S., Siddhartha S., Symplectic manifolds, coherent states and semiclassical approximation. J. Math. Phys. 35(5):1994;2259-2269.
    • (1994) J. Math. Phys. , vol.35 , Issue.5 , pp. 2259-2269
    • Rajeev, S.G.1    Kalyana, R.S.2    Siddhartha, S.3
  • 25
    • 34250262101 scopus 로고
    • Reduction of Hamiltonian systems, affine Lie algebras and Lax equations, parts 1 and 2
    • Rejman A.G., Semenov-Tian-Shansky M.A., Reduction of Hamiltonian systems, affine Lie algebras and Lax equations, parts 1 and 2. Inv. Math. 54:1979;81-100 Rejman A.G., Semenov-Tian-Shansky M.A., Reduction of Hamiltonian systems, affine Lie algebras and Lax equations, parts 1 and 2. Inv. Math. 63:1981;423-432.
    • (1979) Inv. Math. , vol.54 , pp. 81-100
    • Rejman, A.G.1    Semenov-Tian-Shansky, M.A.2
  • 26
    • 4944264899 scopus 로고
    • Reduction of Hamiltonian systems, affine Lie algebras and Lax equations, parts 1 and 2
    • Rejman A.G., Semenov-Tian-Shansky M.A., Reduction of Hamiltonian systems, affine Lie algebras and Lax equations, parts 1 and 2. Inv. Math. 54:1979;81-100 Rejman A.G., Semenov-Tian-Shansky M.A., Reduction of Hamiltonian systems, affine Lie algebras and Lax equations, parts 1 and 2. Inv. Math. 63:1981;423-432.
    • (1981) Inv. Math. , vol.63 , pp. 423-432
    • Rejman, A.G.1    Semenov-Tian-Shansky, M.A.2
  • 28
    • 0001841091 scopus 로고
    • Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds
    • Sato M., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds. RIMS Kokyuroku. 439:1981;30-40.
    • (1981) RIMS Kokyuroku , vol.439 , pp. 30-40
    • Sato, M.1
  • 29
    • 0343012756 scopus 로고
    • Parallel transport and quantum holonomy along density operators
    • Uhlmann A., Parallel transport and quantum holonomy along density operators. Rep. Math. Phys. 24:1986;229-240.
    • (1986) Rep. Math. Phys. , vol.24 , pp. 229-240
    • Uhlmann, A.1
  • 31
    • 0033589996 scopus 로고    scopus 로고
    • Holonomic quantum computation
    • quant-ph/9904011, quant-ph/9907103
    • Zanardi P., Rasetti M., Holonomic quantum computation. Phys. Lett. A. 264:1999;94. quant-ph/9904011, quant-ph/9907103.
    • (1999) Phys. Lett. A , vol.264 , pp. 94
    • Zanardi, P.1    Rasetti, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.