-
2
-
-
16644367980
-
-
M. Shibata and K. Uryū, Phys. Rev. D 61, 064001 (2000); M. Shibata and K. Uryū, Prog. Theor. Phys. 107, 265 (2002).
-
(2000)
Phys. Rev. D
, vol.61
, pp. 064001
-
-
Shibata, M.1
Uryu, K.2
-
4
-
-
18144387288
-
-
A. Ori and K. S. Thorne, Phys. Rev. D 62, 124022 (2000); A. Buonanno and T. Damour, Phys. Rev. D 62, 064015 (2000).
-
(2000)
Phys. Rev. D
, vol.62
, pp. 124022
-
-
Ori, A.1
Thorne, K.S.2
-
5
-
-
0347218821
-
-
A. Ori and K. S. Thorne, Phys. Rev. D 62, 124022 (2000); A. Buonanno and T. Damour, Phys. Rev. D 62, 064015 (2000).
-
(2000)
Phys. Rev. D
, vol.62
, pp. 064015
-
-
Buonanno, A.1
Damour, T.2
-
6
-
-
0037080794
-
-
M. D. Duez, T.W. Baumgarte, S. L. Shapiro, M. Shibata, and K. Uryū, Phys. Rev. D 65, 024016 (2001).
-
(2001)
Phys. Rev. D
, vol.65
, pp. 024016
-
-
Duez, M.D.1
Baumgarte, T.W.2
Shapiro, S.L.3
Shibata, M.4
Uryu, K.5
-
10
-
-
0000201414
-
-
T. W. Baumgarte, G. B. Cook, M. A. Scheel, S. L. Shapiro, and S. A. Teukolsky, Phys. Rev. D 57, 6181 (1998).
-
(1998)
Phys. Rev. D
, vol.57
, pp. 6181
-
-
Baumgarte, T.W.1
Cook, G.B.2
Scheel, M.A.3
Shapiro, S.L.4
Teukolsky, S.A.5
-
11
-
-
0004424255
-
-
Approximating the stars as ellipsoids, it has been shown that the dynamical orbital instability occurs quite close to the secular instability for irrotational binaries in both Newtonian and first-order post-Newtonian theory [D. Lai, F. A. Rasio, and S. L. Shapiro, Astrophys. J. Suppl. 88, 205 (1993)].
-
(1993)
Astrophys. J. Suppl.
, vol.88
, pp. 205
-
-
Lai, D.1
Rasio, F.A.2
Shapiro, S.L.3
-
13
-
-
85032431505
-
-
note
-
For simplicity, in the reminder of the paper we will refer to the zero circulation models as irrotational. See [10] for comparisons between these models and irrotational binaries.
-
-
-
-
14
-
-
11944262266
-
-
C.S. Kochanek, Astrophys. J. 398, 234 (1992); L. Bildsten and C. Cutler, Astrophys. J. 400, 175 (1992).
-
(1992)
Astrophys. J.
, vol.398
, pp. 234
-
-
Kochanek, C.S.1
-
17
-
-
0034904638
-
-
E. Gourgoulhon, P. Grandclément, K. Taniguchi, J.-A. Marck, and S. Bonazzola, Phys. Rev. D 63, 064029 (2001).
-
(2001)
Phys. Rev. D
, vol.63
, pp. 064029
-
-
Gourgoulhon, E.1
Grandclément, P.2
Taniguchi, K.3
Marck, J.-A.4
Bonazzola, S.5
-
18
-
-
85088492649
-
-
note
-
Gamma;. For scaling with k, see Ref. [8].
-
-
-
-
19
-
-
0037438236
-
-
M. D. Duez, P. Marronetti, S.L. Shapiro, and T.W. Baumgarte, Phys. Rev. D 67, 024004 (2003).
-
(2003)
Phys. Rev. D
, vol.67
, pp. 024004
-
-
Duez, M.D.1
Marronetti, P.2
Shapiro, S.L.3
Baumgarte, T.W.4
-
20
-
-
0000831661
-
-
M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995); T.W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59, 024007 (1999).
-
(1995)
Phys. Rev. D
, vol.52
, pp. 5428
-
-
Shibata, M.1
Nakamura, T.2
-
23
-
-
85032430855
-
-
note
-
The time coordinate has been transformed into fractions of the initial orbital period. Note that the periods differ for binaries at different separation.
-
-
-
-
25
-
-
85032426466
-
-
note
-
The total angular momentum like the gravitational mass is not strictly conserved due to the emission of gravitational waves. However, the loss rate of angular momentum for a typical orbit at these separations is of the order of 1% to 2%. Deviations exceeding these values therefore indicate numerical error.
-
-
-
-
26
-
-
85088488758
-
-
note
-
2 norm of the constraint residuals. The details of these plots as well as the normalizations used here can be found in [16], In this Letter, the momentum constraint curve shows the average of the three spatial components.
-
-
-
-
27
-
-
85032428274
-
-
M. Miller, gr-qc/0305024
-
M. Miller, gr-qc/0305024.
-
-
-
-
28
-
-
85032426427
-
-
M. Miller and W.M. Suen, gr-qc/0301112; M. Miller, P. Gressman, and W. M. Suen, gr-qc/0312030
-
M. Miller and W.M. Suen, gr-qc/0301112; M. Miller, P. Gressman, and W. M. Suen, gr-qc/0312030.
-
-
-
-
29
-
-
85032426239
-
-
note
-
Small amounts of spurious radiation present in the initial data are radiated away, leaving M and J nearly unchanged.
-
-
-
|