-
4
-
-
0346649878
-
Learning from data: A tutorial with emphasis on modern pattern recognition methods
-
June
-
M. Pardo and G. Sberveglieri, "Learning from data: A tutorial with emphasis on modern pattern recognition methods," IEEE Sensor J., vol. 2, pp. 203-217, June 2002.
-
(2002)
IEEE Sensor J.
, vol.2
, pp. 203-217
-
-
Pardo, M.1
Sberveglieri, G.2
-
5
-
-
0031370144
-
Lessons in neural network training: Overfitting may be harder than expected
-
Menlo Park, CA
-
S. Lawrence, C. L. Giles, and A. C. Tsoi, "Lessons in neural network training: Overfitting may be harder than expected," in Proc. 14th Nat. Conf. Artificial Intelligence. Menlo Park, CA, 1997, pp. 540-545.
-
(1997)
Proc. 14th Nat. Conf. Artificial Intelligence
, pp. 540-545
-
-
Lawrence, S.1
Giles, C.L.2
Tsoi, A.C.3
-
6
-
-
0027662338
-
Pruning algorithms a survey
-
Oct.
-
R. Reed, "Pruning algorithms a survey," IEEE Trans. Neural Networks, vol. 4, pp. 740-747, Oct. 1993.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 740-747
-
-
Reed, R.1
-
7
-
-
0000494466
-
Optimal brain damage
-
D. S. Touretzky, Ed. San Mateo, CA:Morgan Kauffman
-
Y. LeCun, J. Denker, S. Solla, R. E. Howard, and L. D. Jackel, "Optimal brain damage," in Advances in Neural Information Processing Systems II, D. S. Touretzky, Ed. San Mateo, CA:Morgan Kauffman, 1990.
-
(1990)
Advances in Neural Information Processing Systems II
-
-
LeCun, Y.1
Denker, J.2
Solla, S.3
Howard, R.E.4
Jackel, L.D.5
-
8
-
-
0001234705
-
Second order derivatives for network pruning: Optimal brain surgeon
-
San Mateo, CA: Morgan Kaufmann
-
B. Hassibi and D. G. Stork, "Second order derivatives for network pruning: Optimal brain surgeon," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann, 1993, vol. 5, pp. 164-171.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 164-171
-
-
Hassibi, B.1
Stork, D.G.2
-
9
-
-
0003979410
-
What size neural network gives optimal generalization? Convergence properties of backpropagation
-
Inst. Advanced Computer Studies, Univ. Maryland, College Park, MD 20742, Apr.
-
S. Lawrence, C. L. Giles, and A. C. Tsoi, "What size neural network gives optimal generalization? Convergence properties of backpropagation," Inst. Advanced Computer Studies, Univ. Maryland, College Park, MD 20742, Tech. Rep. UMIACS-TR-96-22 and CS-TR-3617, Apr. 1996.
-
(1996)
Tech. Rep.
, vol.UMIACS-TR-96-22 AND CS-TR-3617
-
-
Lawrence, S.1
Giles, C.L.2
Tsoi, A.C.3
-
10
-
-
0001025418
-
Bayesian interpolation
-
D. J. C. MacKay, "Bayesian interpolation," Neural Comput., vol. 4, pp. 415-447, 1992.
-
(1992)
Neural Comput.
, vol.4
, pp. 415-447
-
-
MacKay, D.J.C.1
-
12
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
-
San Mateo, CA: Morgan Kauffman
-
J. E. Moody, "The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kauffman, 1992, vol. 4, pp. 847-854.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 847-854
-
-
Moody, J.E.1
-
14
-
-
0034228462
-
Computational methods for the analysis of chemical sensor array data from volatile analytes
-
P. C. Jurs, G. A. Bakken, and H. E. McClelland, "Computational methods for the analysis of chemical sensor array data from volatile analytes," Chem. Rev., vol. 100, no. 2, pp. 2649-2678, 2000.
-
(2000)
Chem. Rev.
, vol.100
, Issue.2
, pp. 2649-2678
-
-
Jurs, P.C.1
Bakken, G.A.2
McClelland, H.E.3
-
15
-
-
0027212862
-
Statistics using neural networks: Chance effects
-
D. T. Manallack and D. J. Livingstone, "Statistics using neural networks: Chance effects," J. Med. Chem., vol. 36, pp. 1295-1297, 1993.
-
(1993)
J. Med. Chem.
, vol.36
, pp. 1295-1297
-
-
Manallack, D.T.1
Livingstone, D.J.2
-
16
-
-
0029293504
-
Improvement of surface acoustic wave gas sensor response time using neural-network pattern recognition
-
D. Rebière, C. Bordieu, and J. Pistré, "Improvement of surface acoustic wave gas sensor response time using neural-network pattern recognition," Sens. Actuators B, vol. 25, pp. 777-780, 1995.
-
(1995)
Sens. Actuators B
, vol.25
, pp. 777-780
-
-
Rebière, D.1
Bordieu, C.2
Pistré, J.3
-
17
-
-
0035873867
-
Identification of pollutant gases and its concentrations with a multisensor array
-
R. M. Negri and S. Reich, "Identification of pollutant gases and its concentrations with a multisensor array," Sens. Actuators B, vol. 75, no. 3, pp. 172-178, 2001.
-
(2001)
Sens. Actuators B
, vol.75
, Issue.3
, pp. 172-178
-
-
Negri, R.M.1
Reich, S.2
-
18
-
-
0034323303
-
Explosive gas recognition system using thick film sensor array and neural network
-
D.-S. Lee, H.-Y. Jung, J.-W. Lim, M. Lee, S.-W. Ban, J.-S. Huh, and D.-D. Lee, "Explosive gas recognition system using thick film sensor array and neural network," Sens, Actuators B, vol. 71, no. 1-2, pp. 90-98, 2000.
-
(2000)
Sens, Actuators B
, vol.71
, Issue.1-2
, pp. 90-98
-
-
Lee, D.-S.1
Jung, H.-Y.2
Lim, J.-W.3
Lee, M.4
Ban, S.-W.5
Huh, J.-S.6
Lee, D.-D.7
-
19
-
-
0037173566
-
Study of odor recorder for dynamical change of odor using qcm sensors and neural network
-
T. Nakamoto and H. Hiramatsu, "Study of odor recorder for dynamical change of odor using qcm sensors and neural network," Sens. Actuators B, vol. 85, no. 3, pp. 263-269, 2002.
-
(2002)
Sens. Actuators B
, vol.85
, Issue.3
, pp. 263-269
-
-
Nakamoto, T.1
Hiramatsu, H.2
-
20
-
-
0031221085
-
Quantification of h2s and no2 using gas sensor arrays and an artificial neural network
-
V. Guidi, B. Yang, M. C. Carotta, M. Ferroni, G. Martinelli, G. Sberveglieri, and G. Faglia, "Quantification of h2s and no2 using gas sensor arrays and an artificial neural network," Sens. Actuators B, vol. 43, pp. 235-238, 1997.
-
(1997)
Sens. Actuators B
, vol.43
, pp. 235-238
-
-
Guidi, V.1
Yang, B.2
Carotta, M.C.3
Ferroni, M.4
Martinelli, G.5
Sberveglieri, G.6
Faglia, G.7
-
21
-
-
0032672081
-
Gas analysis system composed of a solid-state sensor array and hybrid neural network structure
-
K. Brudzewski and S. Osowski, "Gas analysis system composed of a solid-state sensor array and hybrid neural network structure," Sens. Actuators B, vol. 55, pp. 38-46, 1999.
-
(1999)
Sens. Actuators B
, vol.55
, pp. 38-46
-
-
Brudzewski, K.1
Osowski, S.2
-
22
-
-
0033895941
-
Determination of the composition of no2 and no mixture by thin-film sensor and back-propagation network
-
J. C. Chen, C. J. Liu, and Y. H. Ju, "Determination of the composition of no2 and no mixture by thin-film sensor and back-propagation network," Sens. Actuators B, vol. 62, no. 2, pp. 143-147, 2000.
-
(2000)
Sens. Actuators B
, vol.62
, Issue.2
, pp. 143-147
-
-
Chen, J.C.1
Liu, C.J.2
Ju, Y.H.3
-
23
-
-
0031735568
-
Neural networks in multivariate calibration
-
F. Despagne and L. Massart, "Neural networks in multivariate calibration," The Analyst, vol. 123, pp. 157R-178R, 1998.
-
(1998)
The Analyst
, vol.123
-
-
Despagne, F.1
Massart, L.2
-
25
-
-
2542460926
-
-
[Online]
-
W. Sarle. Ai Faq/Neural Nets. [Online]. Available: http://www.faqs.org/ faqs/ai-faq/neural-nets/
-
Ai Faq/Neural Nets
-
-
Sarle, W.1
-
26
-
-
84898932856
-
Overfitting in neural networks: Backpropagaiion, conjugale gradient, and early slopping
-
Cambridge, MA: MIT Press
-
R. Caruana, S. Lawrence, and C. L. Giles, "Overfitting in neural networks: Backpropagaiion, conjugale gradient, and early slopping," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, vol. 13, pp. 402-408.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 402-408
-
-
Caruana, R.1
Lawrence, S.2
Giles, C.L.3
-
27
-
-
0033699722
-
Overfitting and neural networks: Conjugate gradient and backpropagation
-
S. Lawrence and C. L. Giles, "Overfitting and neural networks: Conjugate gradient and backpropagation," in Proc. IEEE Int. Conf. Neural Networks, 2000, pp. 114-119.
-
(2000)
Proc. IEEE Int. Conf. Neural Networks
, pp. 114-119
-
-
Lawrence, S.1
Giles, C.L.2
-
28
-
-
0002495649
-
Function approximation with neural networks and local methods: Bias, variance and smoothness
-
S. Lawrence, A. C. Tsoi, and A. D. Back, "Function approximation with neural networks and local methods: Bias, variance and smoothness," in Australian Conf. Neural Networks, 1996, pp. 16-21.
-
(1996)
Australian Conf. Neural Networks
, pp. 16-21
-
-
Lawrence, S.1
Tsoi, A.C.2
Back, A.D.3
-
29
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
E. Bienenstock, S. Geman, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Comput., vol. 4, pp. 1-58, 1992.
-
(1992)
Neural Comput.
, vol.4
, pp. 1-58
-
-
Bienenstock, E.1
Geman, S.2
Doursat, R.3
-
30
-
-
0000029122
-
A simple weight decay can improve generalization
-
San Mateo, CA: Morgan Kaufmann
-
A. Krogh and J. A. Hertz, "A simple weight decay can improve generalization," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann, 1992, vol. 4, pp. 950-957.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 950-957
-
-
Krogh, A.1
Hertz, J.A.2
-
31
-
-
0000539096
-
Generalization by weight-elimination with application to forecasting
-
San Mateo, CA: Morgan Kauffman
-
A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, "Generalization by weight-elimination with application to forecasting," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kauffman, 1991, vol. 3.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
-
-
Weigend, A.S.1
Rumelhart, D.E.2
Huberman, B.A.3
-
36
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Norwell, MA: Kluwer
-
C. Surges, "A tutorial on support vector machines for pattern recognition," in Data Mining and Knowledge Discovery. Norwell, MA: Kluwer, 1998, vol. 2, pp. 1-43.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 1-43
-
-
Surges, C.1
-
37
-
-
0037191113
-
A flexible classification approach with optimal generalization performance: Support vector machines
-
A. I. Belousov, S. A. Verzakov, and J. von Frese, "A flexible classification approach with optimal generalization performance: Support vector machines," Chemometr. Intell. Lab. Syst., vol. 64, pp. 15-25, 2002.
-
(2002)
Chemometr. Intell. Lab. Syst.
, vol.64
, pp. 15-25
-
-
Belousov, A.I.1
Verzakov, S.A.2
Von Frese, J.3
-
38
-
-
2542461872
-
A general framework for learning from data and an application to three electronic nose datasets
-
Brighton, U.K., July
-
M. Pardo, E. Dalcanale, and G. Sberveglieri, "A general framework for learning from data and an application to three electronic nose datasets," in 7th Int. Symp. Olfaction and Electronic Nose, Brighton, U.K., July 2000.
-
(2000)
7th Int. Symp. Olfaction and Electronic Nose
-
-
Pardo, M.1
Dalcanale, E.2
Sberveglieri, G.3
-
40
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
Mar.
-
P. L. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inform. Theory, vol. 44, pp. 525-536, Mar. 1998.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, pp. 525-536
-
-
Bartlett, P.L.1
-
41
-
-
58149323508
-
Recent developments in semiconducting film gas sensors
-
G. Sberveglieri, "Recent developments in semiconducting film gas sensors," Sens. Actuators B, vol. 23, pp. 103-109, 1995.
-
(1995)
Sens. Actuators B
, vol.23
, pp. 103-109
-
-
Sberveglieri, G.1
-
42
-
-
1542328763
-
Coffee analysis with an electronic nose
-
Dec.
-
M. Pardo and G. Sberveglieri, "Coffee analysis with an electronic nose," IEEE Trans. Instrum. Meas., vol. 51, pp. 1334-1339, Dec. 2002.
-
(2002)
IEEE Trans. Instrum. Meas.
, vol.51
, pp. 1334-1339
-
-
Pardo, M.1
Sberveglieri, G.2
-
44
-
-
0028543366
-
Training feedforward networks with the marquardt algorithm
-
Oct.
-
M. T. Hagan and M. Menhaj, "Training feedforward networks with the marquardt algorithm," IEEE Trans. Neural Networks, pp. 989-993, Oct. 1994.
-
(1994)
IEEE Trans. Neural Networks
, pp. 989-993
-
-
Hagan, M.T.1
Menhaj, M.2
|