메뉴 건너뛰기




Volumn 4, Issue 3, 2004, Pages 355-363

Remarks on the use of multilayer perceptrons for the analysis of chemical sensor array data

Author keywords

Chemical sensors; Complexity control; Data analysis; Electronic nose (e nose); Multilayer perceptrons; Overfitting

Indexed keywords

APPROXIMATION THEORY; COMPUTATION THEORY; DATA REDUCTION; ERROR ANALYSIS; LEARNING SYSTEMS; MULTILAYER NEURAL NETWORKS;

EID: 2542458403     PISSN: 1530437X     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSEN.2004.827207     Document Type: Article
Times cited : (40)

References (44)
  • 4
    • 0346649878 scopus 로고    scopus 로고
    • Learning from data: A tutorial with emphasis on modern pattern recognition methods
    • June
    • M. Pardo and G. Sberveglieri, "Learning from data: A tutorial with emphasis on modern pattern recognition methods," IEEE Sensor J., vol. 2, pp. 203-217, June 2002.
    • (2002) IEEE Sensor J. , vol.2 , pp. 203-217
    • Pardo, M.1    Sberveglieri, G.2
  • 5
    • 0031370144 scopus 로고    scopus 로고
    • Lessons in neural network training: Overfitting may be harder than expected
    • Menlo Park, CA
    • S. Lawrence, C. L. Giles, and A. C. Tsoi, "Lessons in neural network training: Overfitting may be harder than expected," in Proc. 14th Nat. Conf. Artificial Intelligence. Menlo Park, CA, 1997, pp. 540-545.
    • (1997) Proc. 14th Nat. Conf. Artificial Intelligence , pp. 540-545
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3
  • 6
    • 0027662338 scopus 로고
    • Pruning algorithms a survey
    • Oct.
    • R. Reed, "Pruning algorithms a survey," IEEE Trans. Neural Networks, vol. 4, pp. 740-747, Oct. 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 740-747
    • Reed, R.1
  • 8
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • San Mateo, CA: Morgan Kaufmann
    • B. Hassibi and D. G. Stork, "Second order derivatives for network pruning: Optimal brain surgeon," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann, 1993, vol. 5, pp. 164-171.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 9
    • 0003979410 scopus 로고    scopus 로고
    • What size neural network gives optimal generalization? Convergence properties of backpropagation
    • Inst. Advanced Computer Studies, Univ. Maryland, College Park, MD 20742, Apr.
    • S. Lawrence, C. L. Giles, and A. C. Tsoi, "What size neural network gives optimal generalization? Convergence properties of backpropagation," Inst. Advanced Computer Studies, Univ. Maryland, College Park, MD 20742, Tech. Rep. UMIACS-TR-96-22 and CS-TR-3617, Apr. 1996.
    • (1996) Tech. Rep. , vol.UMIACS-TR-96-22 AND CS-TR-3617
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3
  • 10
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. MacKay, "Bayesian interpolation," Neural Comput., vol. 4, pp. 415-447, 1992.
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 12
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • San Mateo, CA: Morgan Kauffman
    • J. E. Moody, "The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kauffman, 1992, vol. 4, pp. 847-854.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 847-854
    • Moody, J.E.1
  • 14
    • 0034228462 scopus 로고    scopus 로고
    • Computational methods for the analysis of chemical sensor array data from volatile analytes
    • P. C. Jurs, G. A. Bakken, and H. E. McClelland, "Computational methods for the analysis of chemical sensor array data from volatile analytes," Chem. Rev., vol. 100, no. 2, pp. 2649-2678, 2000.
    • (2000) Chem. Rev. , vol.100 , Issue.2 , pp. 2649-2678
    • Jurs, P.C.1    Bakken, G.A.2    McClelland, H.E.3
  • 15
    • 0027212862 scopus 로고
    • Statistics using neural networks: Chance effects
    • D. T. Manallack and D. J. Livingstone, "Statistics using neural networks: Chance effects," J. Med. Chem., vol. 36, pp. 1295-1297, 1993.
    • (1993) J. Med. Chem. , vol.36 , pp. 1295-1297
    • Manallack, D.T.1    Livingstone, D.J.2
  • 16
    • 0029293504 scopus 로고
    • Improvement of surface acoustic wave gas sensor response time using neural-network pattern recognition
    • D. Rebière, C. Bordieu, and J. Pistré, "Improvement of surface acoustic wave gas sensor response time using neural-network pattern recognition," Sens. Actuators B, vol. 25, pp. 777-780, 1995.
    • (1995) Sens. Actuators B , vol.25 , pp. 777-780
    • Rebière, D.1    Bordieu, C.2    Pistré, J.3
  • 17
    • 0035873867 scopus 로고    scopus 로고
    • Identification of pollutant gases and its concentrations with a multisensor array
    • R. M. Negri and S. Reich, "Identification of pollutant gases and its concentrations with a multisensor array," Sens. Actuators B, vol. 75, no. 3, pp. 172-178, 2001.
    • (2001) Sens. Actuators B , vol.75 , Issue.3 , pp. 172-178
    • Negri, R.M.1    Reich, S.2
  • 18
    • 0034323303 scopus 로고    scopus 로고
    • Explosive gas recognition system using thick film sensor array and neural network
    • D.-S. Lee, H.-Y. Jung, J.-W. Lim, M. Lee, S.-W. Ban, J.-S. Huh, and D.-D. Lee, "Explosive gas recognition system using thick film sensor array and neural network," Sens, Actuators B, vol. 71, no. 1-2, pp. 90-98, 2000.
    • (2000) Sens, Actuators B , vol.71 , Issue.1-2 , pp. 90-98
    • Lee, D.-S.1    Jung, H.-Y.2    Lim, J.-W.3    Lee, M.4    Ban, S.-W.5    Huh, J.-S.6    Lee, D.-D.7
  • 19
    • 0037173566 scopus 로고    scopus 로고
    • Study of odor recorder for dynamical change of odor using qcm sensors and neural network
    • T. Nakamoto and H. Hiramatsu, "Study of odor recorder for dynamical change of odor using qcm sensors and neural network," Sens. Actuators B, vol. 85, no. 3, pp. 263-269, 2002.
    • (2002) Sens. Actuators B , vol.85 , Issue.3 , pp. 263-269
    • Nakamoto, T.1    Hiramatsu, H.2
  • 21
    • 0032672081 scopus 로고    scopus 로고
    • Gas analysis system composed of a solid-state sensor array and hybrid neural network structure
    • K. Brudzewski and S. Osowski, "Gas analysis system composed of a solid-state sensor array and hybrid neural network structure," Sens. Actuators B, vol. 55, pp. 38-46, 1999.
    • (1999) Sens. Actuators B , vol.55 , pp. 38-46
    • Brudzewski, K.1    Osowski, S.2
  • 22
    • 0033895941 scopus 로고    scopus 로고
    • Determination of the composition of no2 and no mixture by thin-film sensor and back-propagation network
    • J. C. Chen, C. J. Liu, and Y. H. Ju, "Determination of the composition of no2 and no mixture by thin-film sensor and back-propagation network," Sens. Actuators B, vol. 62, no. 2, pp. 143-147, 2000.
    • (2000) Sens. Actuators B , vol.62 , Issue.2 , pp. 143-147
    • Chen, J.C.1    Liu, C.J.2    Ju, Y.H.3
  • 23
    • 0031735568 scopus 로고    scopus 로고
    • Neural networks in multivariate calibration
    • F. Despagne and L. Massart, "Neural networks in multivariate calibration," The Analyst, vol. 123, pp. 157R-178R, 1998.
    • (1998) The Analyst , vol.123
    • Despagne, F.1    Massart, L.2
  • 25
    • 2542460926 scopus 로고    scopus 로고
    • [Online]
    • W. Sarle. Ai Faq/Neural Nets. [Online]. Available: http://www.faqs.org/ faqs/ai-faq/neural-nets/
    • Ai Faq/Neural Nets
    • Sarle, W.1
  • 26
    • 84898932856 scopus 로고    scopus 로고
    • Overfitting in neural networks: Backpropagaiion, conjugale gradient, and early slopping
    • Cambridge, MA: MIT Press
    • R. Caruana, S. Lawrence, and C. L. Giles, "Overfitting in neural networks: Backpropagaiion, conjugale gradient, and early slopping," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, vol. 13, pp. 402-408.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 402-408
    • Caruana, R.1    Lawrence, S.2    Giles, C.L.3
  • 27
    • 0033699722 scopus 로고    scopus 로고
    • Overfitting and neural networks: Conjugate gradient and backpropagation
    • S. Lawrence and C. L. Giles, "Overfitting and neural networks: Conjugate gradient and backpropagation," in Proc. IEEE Int. Conf. Neural Networks, 2000, pp. 114-119.
    • (2000) Proc. IEEE Int. Conf. Neural Networks , pp. 114-119
    • Lawrence, S.1    Giles, C.L.2
  • 28
    • 0002495649 scopus 로고    scopus 로고
    • Function approximation with neural networks and local methods: Bias, variance and smoothness
    • S. Lawrence, A. C. Tsoi, and A. D. Back, "Function approximation with neural networks and local methods: Bias, variance and smoothness," in Australian Conf. Neural Networks, 1996, pp. 16-21.
    • (1996) Australian Conf. Neural Networks , pp. 16-21
    • Lawrence, S.1    Tsoi, A.C.2    Back, A.D.3
  • 29
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • E. Bienenstock, S. Geman, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Comput., vol. 4, pp. 1-58, 1992.
    • (1992) Neural Comput. , vol.4 , pp. 1-58
    • Bienenstock, E.1    Geman, S.2    Doursat, R.3
  • 30
    • 0000029122 scopus 로고
    • A simple weight decay can improve generalization
    • San Mateo, CA: Morgan Kaufmann
    • A. Krogh and J. A. Hertz, "A simple weight decay can improve generalization," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann, 1992, vol. 4, pp. 950-957.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 950-957
    • Krogh, A.1    Hertz, J.A.2
  • 36
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Norwell, MA: Kluwer
    • C. Surges, "A tutorial on support vector machines for pattern recognition," in Data Mining and Knowledge Discovery. Norwell, MA: Kluwer, 1998, vol. 2, pp. 1-43.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 1-43
    • Surges, C.1
  • 37
    • 0037191113 scopus 로고    scopus 로고
    • A flexible classification approach with optimal generalization performance: Support vector machines
    • A. I. Belousov, S. A. Verzakov, and J. von Frese, "A flexible classification approach with optimal generalization performance: Support vector machines," Chemometr. Intell. Lab. Syst., vol. 64, pp. 15-25, 2002.
    • (2002) Chemometr. Intell. Lab. Syst. , vol.64 , pp. 15-25
    • Belousov, A.I.1    Verzakov, S.A.2    Von Frese, J.3
  • 38
    • 2542461872 scopus 로고    scopus 로고
    • A general framework for learning from data and an application to three electronic nose datasets
    • Brighton, U.K., July
    • M. Pardo, E. Dalcanale, and G. Sberveglieri, "A general framework for learning from data and an application to three electronic nose datasets," in 7th Int. Symp. Olfaction and Electronic Nose, Brighton, U.K., July 2000.
    • (2000) 7th Int. Symp. Olfaction and Electronic Nose
    • Pardo, M.1    Dalcanale, E.2    Sberveglieri, G.3
  • 40
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Mar.
    • P. L. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inform. Theory, vol. 44, pp. 525-536, Mar. 1998.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 41
    • 58149323508 scopus 로고
    • Recent developments in semiconducting film gas sensors
    • G. Sberveglieri, "Recent developments in semiconducting film gas sensors," Sens. Actuators B, vol. 23, pp. 103-109, 1995.
    • (1995) Sens. Actuators B , vol.23 , pp. 103-109
    • Sberveglieri, G.1
  • 42
    • 1542328763 scopus 로고    scopus 로고
    • Coffee analysis with an electronic nose
    • Dec.
    • M. Pardo and G. Sberveglieri, "Coffee analysis with an electronic nose," IEEE Trans. Instrum. Meas., vol. 51, pp. 1334-1339, Dec. 2002.
    • (2002) IEEE Trans. Instrum. Meas. , vol.51 , pp. 1334-1339
    • Pardo, M.1    Sberveglieri, G.2
  • 44
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Oct.
    • M. T. Hagan and M. Menhaj, "Training feedforward networks with the marquardt algorithm," IEEE Trans. Neural Networks, pp. 989-993, Oct. 1994.
    • (1994) IEEE Trans. Neural Networks , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.