-
3
-
-
0001763459
-
Feigenvalues for mandelsets
-
K. M. Briggs, G. R. W. Quispel, C. J. Tomphson. Feigenvalues for Mandelsets. J. Phys. A24, No 14, 1991, P. 3363-3368.
-
(1991)
J. Phys.
, vol.A24
, Issue.14
, pp. 3363-3368
-
-
Briggs, K.M.1
Quispel, G.R.W.2
Tomphson, C.J.3
-
4
-
-
0011549927
-
Self-similarity and hairiness in the mandelbrot set
-
J. Milnor. Self-Similarity and Hairiness in the Mandelbrot Set. Computers in Geometry and Topology, 114, 1989, P. 211-257.
-
(1989)
Computers in Geometry and Topology
, vol.114
, pp. 211-257
-
-
Milnor, J.1
-
5
-
-
0006898449
-
Complex universality
-
P. Cvitanović, J. Myrheim. Complex Universality. Commun. Math. Phys., 121, No 2, 1989, P. 225-254.
-
(1989)
Commun. Math. Phys.
, vol.121
, Issue.2
, pp. 225-254
-
-
Cvitanović, P.1
Myrheim, J.2
-
6
-
-
0001816458
-
Quantitative universality for a class of non-linear transformations
-
M. J. Feigenbaum. Quantitative Universality for a Class of Non-Linear Transformations. J. Stat. Phys., 19, No 1, 1978, P. 25-52.
-
(1978)
J. Stat. Phys.
, vol.19
, Issue.1
, pp. 25-52
-
-
Feigenbaum, M.J.1
-
7
-
-
0347447535
-
The universal metric properties of non-linear transformations
-
M. J. Feigenbaum. The Universal Metric Properties of Non-Linear Transformations. J. Stat. Phys., 21, No 6, 1979, P. 669-706.
-
(1979)
J. Stat. Phys.
, vol.21
, Issue.6
, pp. 669-706
-
-
Feigenbaum, M.J.1
-
8
-
-
0007159764
-
Universality in behavior of nonlinear systems
-
M. Feigenbaum. Universality in Behavior of Nonlinear Systems. Usp. Fiz. Nauk, V. 141, No 2, 1983, P. 343-374.
-
(1983)
Usp. Fiz. Nauk
, vol.141
, Issue.2
, pp. 343-374
-
-
Feigenbaum, M.1
-
9
-
-
84927989803
-
Feigenbaum universality and the thermodynamic formalism
-
E. B. Vul, Y. G. Sinai, K. M. Khanin. Feigenbaum Universality and the Thermodynamic Formalism. Russ. Math. Surv., 39, No 3, 1984, P. 1-40.
-
(1984)
Russ. Math. Surv.
, vol.39
, Issue.3
, pp. 1-40
-
-
Vul, E.B.1
Sinai, Y.G.2
Khanin, K.M.3
-
10
-
-
34250102301
-
Fractal boundary of domain of analyticity of the feigenbaum function and relation to the mandelbrot set
-
M. Nauenberg. Fractal Boundary of Domain of Analyticity of the Feigenbaum Function and Relation to the Mandelbrot Set. J. Stat. Phys., V. 47, No 3-4, 1987, P. 459-475.
-
(1987)
J. Stat. Phys.
, vol.47
, Issue.3-4
, pp. 459-475
-
-
Nauenberg, M.1
-
11
-
-
52849097214
-
The extension of the feigenbaum-cvitanović function to the complex plane
-
A. L. J. Wells, R. E. Overill. The Extension of the Feigenbaum- Cvitanović Function to the Complex Plane. Int. J. of Bifurcation and Chaos. V. 4, No 4, 1994, P. 1041-1051.
-
(1994)
Int. J. of Bifurcation and Chaos
, vol.4
, Issue.4
, pp. 1041-1051
-
-
Wells, A.L.J.1
Overill, R.E.2
-
12
-
-
0006950137
-
Universal properties for sequences of bifurcations of period 3
-
A. I. Golberg, Y. G. Sinai, K. M. Khanin. Universal Properties for Sequences of Bifurcations of Period 3. Russ. Math. Surv., V. 38, No 1, 1983, P. 187-188.
-
(1983)
Russ. Math. Surv.
, vol.38
, Issue.1
, pp. 187-188
-
-
Golberg, A.I.1
Sinai, Y.G.2
Khanin, K.M.3
-
13
-
-
30244535403
-
Universality for period n-tuplings in complex mappings
-
P. Cvitanović, J. Myrheim. Universality for Period n-Tuplings in Complex Mappings. Phys. Lett. A94, No 8, 1983, P. 329-333.
-
(1983)
Phys. Lett. A
, vol.94
, Issue.8
, pp. 329-333
-
-
Cvitanović, P.1
Myrheim, J.2
-
14
-
-
0000877359
-
Physical meaning for mandelbrot and julia set
-
C. Beck. Physical Meaning for Mandelbrot and Julia Set. Physica D125, 1999, P. 171-182.
-
(1999)
Physica D
, vol.125
, pp. 171-182
-
-
Beck, C.1
-
15
-
-
33645066467
-
Trajectory scaling for period tripling in near conformal mappings
-
G. H. Gunaratne. Trajectory Scaling for Period Tripling in Near Conformal Mappings. Phys. Rev. A36, 1987, P. 1834-1839.
-
(1987)
Phys. Rev.
, vol.A36
, pp. 1834-1839
-
-
Gunaratne, G.H.1
-
16
-
-
84948854031
-
Instability of the mandelbrot set
-
J. Peinke, J. Parisi, B. Rohricht, O. E. Rossler. Instability of the Mandelbrot Set. Zeitsch. Naturforsch. A42, No 3, 1987. P. 263-266.
-
(1987)
Zeitsch. Naturforsch.
, vol.A42
, Issue.3
, pp. 263-266
-
-
Peinke, J.1
Parisi, J.2
Rohricht, B.3
Rossler, O.E.4
-
17
-
-
0343932448
-
Mandelbrot set in a non-analytic map
-
M. Klein. Mandelbrot Set in a Non-Analytic Map. Zeitsch. Naturforsch. A43, No 8-9, 1988, P. 819-820.
-
(1988)
Zeitsch. Naturforsch.
, vol.A43
, Issue.8-9
, pp. 819-820
-
-
Klein, M.1
-
18
-
-
0031987247
-
Real perturbation of complex analytic families: Points to regions
-
B. B. Peckham. Real Perturbation of Complex Analytic Families: Points to Regions. Int. J. of Bifurcation and Chaos, V. 8, No 1, 1998, P. 73-93.
-
(1998)
Int. J. of Bifurcation and Chaos
, vol.8
, Issue.1
, pp. 73-93
-
-
Peckham, B.B.1
-
19
-
-
0034134827
-
Real continuation from the complex quadratic family: Fixed-point bifurcation sets
-
B. B. Peckham, J. Montaldi. Real Continuation from the Complex Quadratic Family: Fixed-Point Bifurcation Sets. Int. J. of Bifurcation and Chaos, V. 10, No 2, 2000, P. 391-414.
-
(2000)
Int. J. of Bifurcation and Chaos
, vol.10
, Issue.2
, pp. 391-414
-
-
Peckham, B.B.1
Montaldi, J.2
-
20
-
-
0033896027
-
On perturbations of the maldelbrot map
-
J. Argyris, I. Andreadis, T. E. Karakasidis. On Perturbations of the Maldelbrot Map. Chaos, Solitons & Fractals, V. 11, No 7, 2000, P. 1131-1136.
-
(2000)
Chaos, Solitons & Fractals
, vol.11
, Issue.7
, pp. 1131-1136
-
-
Argyris, J.1
Andreadis, I.2
Karakasidis, T.E.3
-
21
-
-
0000716387
-
On perturbations modulated non-linear processes and a novel mechanism to induce chaos
-
J. Rössler, M. Kiwi, B. Hess, M. Marcus. On Perturbations Modulated Non-Linear Processes and a Novel Mechanism to Induce Chaos. Phys. Rev. A39, No 11, 1989, P. 5954-5960.
-
(1989)
Phys. Rev.
, vol.A39
, Issue.11
, pp. 5954-5960
-
-
Rössler, J.1
Kiwi, M.2
Hess, B.3
Marcus, M.4
-
22
-
-
0024902063
-
Lyapunov exponents of the logistic map with periodic forcing
-
M. Marcus, B. Hess. Lyapunov Exponents of the Logistic Map with Periodic Forcing. Computers & Graphics, V. 13, No 4, 1989, P. 553-558.
-
(1989)
Computers & Graphics
, vol.13
, Issue.4
, pp. 553-558
-
-
Marcus, M.1
Hess, B.2
-
23
-
-
0032008359
-
Lyapunov graph for two-parameters map: Application to the circle map
-
J. C. Bastos de Figueiredo, C. P. Malta. Lyapunov Graph for Two-Parameters Map: Application to the Circle Map. Int. J. of Bifurcation and Chaos, V. 8, No 2, 1998, P. 281-293.
-
(1998)
Int. J. of Bifurcation and Chaos
, vol.8
, Issue.2
, pp. 281-293
-
-
De Bastos Figueiredo, J.C.1
Malta, C.P.2
-
24
-
-
0000554193
-
Three-parameter scaling for one-dimensional maps
-
A. P. Kuznetsov, S. P. Kuznetsov, I. R. Sataev. Three-Parameter Scaling for One-Dimensional Maps. Phys. Lett. A189, No 5, 1994, P. 367-373.
-
(1994)
Phys. Lett.
, vol.A189
, Issue.5
, pp. 367-373
-
-
Kuznetsov, A.P.1
Kuznetsov, S.P.2
Sataev, I.R.3
-
25
-
-
0002500575
-
A variety of the period-doubling universality classes in multi-parameter analysis of transition to chaos
-
A. P. Kuznetsov, S. P. Kuznetsov, I. R. Sataev. A Variety of the Period-Doubling Universality Classes in Multi-Parameter Analysis of Transition to Chaos. Physica D109, No 1-2, 1997, P. 91-112.
-
(1997)
Physica
, vol.D109
, Issue.1-2
, pp. 91-112
-
-
Kuznetsov, A.P.1
Kuznetsov, S.P.2
Sataev, I.R.3
-
26
-
-
0034239256
-
Critical point of tori collision in quasiperiodically forced systems
-
S. P. Kuznetsov, E. Neumann, A. Pikovsky, I. R. Sataev. Critical Point of Tori Collision in Quasiperiodically Forced Systems. Phys. Rev. E62, No 2, 2000, P. 1995-2007.
-
(2000)
Phys. Rev.
, vol.E62
, Issue.2
, pp. 1995-2007
-
-
Kuznetsov, S.P.1
Neumann, E.2
Pikovsky, A.3
Sataev, I.R.4
|