메뉴 건너뛰기




Volumn 36, Issue 5, 2005, Pages 1689-1703

Invariant measures for the stochastic von Karman plate equation

Author keywords

Brownian motion; Existence of a solution; Invariant measure; Probability distribution; Stopping time; Tightness; Von Karman plate equation

Indexed keywords

EXISTENCE OF SOLUTION; INVARIANT MEASURE; STOPPING TIME; TIGHTNESS; VON KARMAN PLATE EQUATIONS;

EID: 25144518110     PISSN: 00361410     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0036141003438854     Document Type: Article
Times cited : (8)

References (17)
  • 1
    • 0039489668 scopus 로고    scopus 로고
    • Uniqueness theorem for weak solutions of von Karman evolution equations
    • A. BOUTET DE MONVEL AND I. CHUESHOV, Uniqueness theorem for weak solutions of von Karman evolution equations, J. Math. Anal. Appl., 221 (1998), pp. 419-429.
    • (1998) J. Math. Anal. Appl. , vol.221 , pp. 419-429
    • De Monvel, A.B.1    Chueshov, I.2
  • 2
    • 0346442663 scopus 로고    scopus 로고
    • Stationary solutions of nonlinear stochastic evolution equations
    • P.L. CHOW AND R.Z. KHASMINSKII, Stationary solutions of nonlinear stochastic evolution equations, Stochastic Anal. Appl., 15 (1997), pp. 671-699.
    • (1997) Stochastic Anal. Appl. , vol.15 , pp. 671-699
    • Chow, P.L.1    Khasminskii, R.Z.2
  • 3
    • 25144521521 scopus 로고
    • Existence of statistical solutions of a stochastic system of von Karman equations in a bounded domain
    • I. CHUESHOV, Existence of statistical solutions of a stochastic system of von Karman equations in a bounded domain, Sb. Math., 50 (1985), pp. 279-298.
    • (1985) Sb. Math. , vol.50 , pp. 279-298
    • Chueshov, I.1
  • 4
    • 0012200219 scopus 로고
    • Strong solutions and the attractor of the von Karman equations
    • I. CHUESHOV, Strong solutions and the attractor of the von Karman equations, Sb. Math., 69 (1991), pp. 25-36.
    • (1991) Sb. Math. , vol.69 , pp. 25-36
    • Chueshov, I.1
  • 5
    • 0141973213 scopus 로고    scopus 로고
    • Inertial manifolds for von Karman plate equations
    • I. CHUESHOV AND I. LASIECKA, Inertial manifolds for von Karman plate equations, Appl. Math. Optim., 46 (2002), pp. 179-206.
    • (2002) Appl. Math. Optim. , vol.46 , pp. 179-206
    • Chueshov, I.1    Lasiecka, I.2
  • 8
    • 0001652946 scopus 로고    scopus 로고
    • Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation
    • A. FAVINI, M. HORN, I. LASIECKA, AND D. TATARU, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation, Differential Integral Equations, 9 (1996), pp. 267-294.
    • (1996) Differential Integral Equations , vol.9 , pp. 267-294
    • Favini, A.1    Horn, M.2    Lasiecka, I.3    Tataru, D.4
  • 9
    • 0344982535 scopus 로고    scopus 로고
    • Addendum to the paper: Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation
    • A. FAVINI, M. HORN, I. LASIECKA, AND D. TATARU, Addendum to the paper: Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation, Differential Integral Equations, 10 (1997), pp. 197-200.
    • (1997) Differential Integral Equations , vol.10 , pp. 197-200
    • Favini, A.1    Horn, M.2    Lasiecka, I.3    Tataru, D.4
  • 10
    • 25144471895 scopus 로고
    • The existence of statistical solutions of the stochastic von Karman system in a bounded domain
    • V.I. GISHLARKAEV, The existence of statistical solutions of the stochastic von Karman system in a bounded domain, Math. Notes, 58 (1995), pp. 692-702.
    • (1995) Math. Notes , vol.58 , pp. 692-702
    • Gishlarkaev, V.I.1
  • 12
    • 0002651817 scopus 로고
    • La théorie générale de la mesure dans son application à l'étude des systémes de la Mécanique non linéaire
    • N. KRYLOV AND N. BOGOLYUBOV, La théorie générale de la mesure dans son application à l'étude des systémes de la Mécanique non linéaire, Ann. of Math. (2), 38 (1937), pp. 65-113.
    • (1937) Ann. of Math. , vol.38 , Issue.2 , pp. 65-113
    • Krylov, N.1    Bogolyubov, N.2
  • 13
    • 0002288772 scopus 로고
    • A submartingale type inequality with applications to stochastic evolution equations
    • P. KOTELENEZ, A submartingale type inequality with applications to stochastic evolution equations, Stochastics, 8 (1982), pp. 139-151.
    • (1982) Stochastics , vol.8 , pp. 139-151
    • Kotelenez, P.1
  • 14
    • 0001449481 scopus 로고
    • Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces
    • G. LEHA AND G. RITTER, Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces, Stochastics Stochastics Rep., 48 (1994), pp. 195-225.
    • (1994) Stochastics Stochastics Rep. , vol.48 , pp. 195-225
    • Leha, G.1    Ritter, G.2
  • 17
    • 0035667806 scopus 로고    scopus 로고
    • Strong Feller solutions to SPDE's are strong Feller in the weak topology
    • B. MASLOWSKI AND J. SEIDLER, Strong Feller solutions to SPDE's are strong Feller in the weak topology, Studia Math., 148 (2001), pp. 111-129.
    • (2001) Studia Math. , vol.148 , pp. 111-129
    • Maslowski, B.1    Seidler, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.