-
1
-
-
0039489668
-
Uniqueness theorem for weak solutions of von Karman evolution equations
-
A. BOUTET DE MONVEL AND I. CHUESHOV, Uniqueness theorem for weak solutions of von Karman evolution equations, J. Math. Anal. Appl., 221 (1998), pp. 419-429.
-
(1998)
J. Math. Anal. Appl.
, vol.221
, pp. 419-429
-
-
De Monvel, A.B.1
Chueshov, I.2
-
2
-
-
0346442663
-
Stationary solutions of nonlinear stochastic evolution equations
-
P.L. CHOW AND R.Z. KHASMINSKII, Stationary solutions of nonlinear stochastic evolution equations, Stochastic Anal. Appl., 15 (1997), pp. 671-699.
-
(1997)
Stochastic Anal. Appl.
, vol.15
, pp. 671-699
-
-
Chow, P.L.1
Khasminskii, R.Z.2
-
3
-
-
25144521521
-
Existence of statistical solutions of a stochastic system of von Karman equations in a bounded domain
-
I. CHUESHOV, Existence of statistical solutions of a stochastic system of von Karman equations in a bounded domain, Sb. Math., 50 (1985), pp. 279-298.
-
(1985)
Sb. Math.
, vol.50
, pp. 279-298
-
-
Chueshov, I.1
-
4
-
-
0012200219
-
Strong solutions and the attractor of the von Karman equations
-
I. CHUESHOV, Strong solutions and the attractor of the von Karman equations, Sb. Math., 69 (1991), pp. 25-36.
-
(1991)
Sb. Math.
, vol.69
, pp. 25-36
-
-
Chueshov, I.1
-
5
-
-
0141973213
-
Inertial manifolds for von Karman plate equations
-
I. CHUESHOV AND I. LASIECKA, Inertial manifolds for von Karman plate equations, Appl. Math. Optim., 46 (2002), pp. 179-206.
-
(2002)
Appl. Math. Optim.
, vol.46
, pp. 179-206
-
-
Chueshov, I.1
Lasiecka, I.2
-
8
-
-
0001652946
-
Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation
-
A. FAVINI, M. HORN, I. LASIECKA, AND D. TATARU, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation, Differential Integral Equations, 9 (1996), pp. 267-294.
-
(1996)
Differential Integral Equations
, vol.9
, pp. 267-294
-
-
Favini, A.1
Horn, M.2
Lasiecka, I.3
Tataru, D.4
-
9
-
-
0344982535
-
Addendum to the paper: Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation
-
A. FAVINI, M. HORN, I. LASIECKA, AND D. TATARU, Addendum to the paper: Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation, Differential Integral Equations, 10 (1997), pp. 197-200.
-
(1997)
Differential Integral Equations
, vol.10
, pp. 197-200
-
-
Favini, A.1
Horn, M.2
Lasiecka, I.3
Tataru, D.4
-
10
-
-
25144471895
-
The existence of statistical solutions of the stochastic von Karman system in a bounded domain
-
V.I. GISHLARKAEV, The existence of statistical solutions of the stochastic von Karman system in a bounded domain, Math. Notes, 58 (1995), pp. 692-702.
-
(1995)
Math. Notes
, vol.58
, pp. 692-702
-
-
Gishlarkaev, V.I.1
-
11
-
-
0004171561
-
-
Springer, New York, Berlin, Heidelberg
-
I. KARATZAS AND S. SHREVE, Brownian Motion and Stochastic Calculus, 2nd ed., Springer, New York, Berlin, Heidelberg, 1997.
-
(1997)
Brownian Motion and Stochastic Calculus, 2nd Ed.
-
-
Karatzas, I.1
Shreve, S.2
-
12
-
-
0002651817
-
La théorie générale de la mesure dans son application à l'étude des systémes de la Mécanique non linéaire
-
N. KRYLOV AND N. BOGOLYUBOV, La théorie générale de la mesure dans son application à l'étude des systémes de la Mécanique non linéaire, Ann. of Math. (2), 38 (1937), pp. 65-113.
-
(1937)
Ann. of Math.
, vol.38
, Issue.2
, pp. 65-113
-
-
Krylov, N.1
Bogolyubov, N.2
-
13
-
-
0002288772
-
A submartingale type inequality with applications to stochastic evolution equations
-
P. KOTELENEZ, A submartingale type inequality with applications to stochastic evolution equations, Stochastics, 8 (1982), pp. 139-151.
-
(1982)
Stochastics
, vol.8
, pp. 139-151
-
-
Kotelenez, P.1
-
14
-
-
0001449481
-
Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces
-
G. LEHA AND G. RITTER, Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces, Stochastics Stochastics Rep., 48 (1994), pp. 195-225.
-
(1994)
Stochastics Stochastics Rep.
, vol.48
, pp. 195-225
-
-
Leha, G.1
Ritter, G.2
-
17
-
-
0035667806
-
Strong Feller solutions to SPDE's are strong Feller in the weak topology
-
B. MASLOWSKI AND J. SEIDLER, Strong Feller solutions to SPDE's are strong Feller in the weak topology, Studia Math., 148 (2001), pp. 111-129.
-
(2001)
Studia Math.
, vol.148
, pp. 111-129
-
-
Maslowski, B.1
Seidler, J.2
|