메뉴 건너뛰기




Volumn 167, Issue 2, 2005, Pages 1304-1310

Nonexistence of global solutions to a hyperbolic equation with a space-time fractional damping

Author keywords

Hyperbolic equation; Nonexistence; Space time fractional damping

Indexed keywords

DERIVATIVES; FUNCTIONS; MATHEMATICAL MODELS; PROBLEM SOLVING;

EID: 25144466532     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2004.08.038     Document Type: Article
Times cited : (19)

References (15)
  • 1
    • 84871758915 scopus 로고
    • Critère d'existence de solutions positives pour des équations semi-linéaires non monotones
    • P. Baras, and M. Pierre Critère d'existence de solutions positives pour des équations semi-linéaires non monotones Ann. Inst. H. Poincaré - Anal. non Linéaire 2 1985 185 212
    • (1985) Ann. Inst. H. Poincaré - Anal. Non Linéaire , vol.2 , pp. 185-212
    • Baras, P.1    Pierre, M.2
  • 2
    • 38249034556 scopus 로고
    • Local and global solvability of a class of semi- linear parabolic equations
    • P. Baras, and P. Kersner Local and global solvability of a class of semi- linear parabolic equations J. Differen. Equat. 68 2 1987 238 252
    • (1987) J. Differen. Equat. , vol.68 , Issue.2 , pp. 238-252
    • Baras, P.1    Kersner, P.2
  • 3
    • 0036972720 scopus 로고    scopus 로고
    • Attractors for strongly damped wave equations with critical nonlinearities
    • A.N. Carvalho, and J.W. Cholewa Attractors for strongly damped wave equations with critical nonlinearities Pacific J. Math. 207 2 2002 287 310
    • (2002) Pacific J. Math. , vol.207 , Issue.2 , pp. 287-310
    • Carvalho, A.N.1    Cholewa, J.W.2
  • 7
    • 25144437753 scopus 로고
    • On A heat conduction equation for a medium with nonuniformly distributed nonlinear heat source or absorbers
    • A.S. Kalashnikov On A heat conduction equation for a medium with nonuniformly distributed nonlinear heat source or absorbers Bull. Univ. Moscou Math. Mech. 3 1983 20 24
    • (1983) Bull. Univ. Moscou Math. Mech. , vol.3 , pp. 20-24
    • Kalashnikov, A.S.1
  • 8
    • 0037229854 scopus 로고    scopus 로고
    • Exponential growth for a fractionally damped wave equation
    • M. Kirane, and N. Tatar Exponential growth for a fractionally damped wave equation Zeit. Anal. Angw 22 1 2003 167 177
    • (2003) Zeit. Anal. Angw , vol.22 , Issue.1 , pp. 167-177
    • Kirane, M.1    Tatar, N.2
  • 9
    • 0038396622 scopus 로고    scopus 로고
    • Fujita's exponent for a semilinear wave equation with linear damping
    • M. Kirane, and M. Qafsaoui Fujita's exponent for a semilinear wave equation with linear damping Adv. Nonlinear Stud. 2 1 2002 41 49
    • (2002) Adv. Nonlinear Stud. , vol.2 , Issue.1 , pp. 41-49
    • Kirane, M.1    Qafsaoui, M.2
  • 11
    • 0034347155 scopus 로고    scopus 로고
    • Nonlinear Hamiltonian equations with fractional damping
    • M. Seredynska, and A. Hanyga Nonlinear Hamiltonian equations with fractional damping J. Math. Phys 41 2000 2135 2156
    • (2000) J. Math. Phys , vol.41 , pp. 2135-2156
    • Seredynska, M.1    Hanyga, A.2
  • 13
    • 0344549781 scopus 로고    scopus 로고
    • A wave equation with a fractional damping
    • N. Tatar A wave equation with a fractional damping Zeit. Anal. Angw 22 2003 609 617
    • (2003) Zeit. Anal. Angw , vol.22 , pp. 609-617
    • Tatar, N.1
  • 14
    • 0001626801 scopus 로고    scopus 로고
    • Critical exponent for a nonlinear wave equation with damping
    • G. Todorova, and B. Yordanov Critical exponent for a nonlinear wave equation with damping J. Differen. Equat. 174 2001 464 489
    • (2001) J. Differen. Equat. , vol.174 , pp. 464-489
    • Todorova, G.1    Yordanov, B.2
  • 15
    • 0035880085 scopus 로고    scopus 로고
    • A blow-up result for a nonlinear wave equation with damping: The critical case
    • Q. Zhang A blow-up result for a nonlinear wave equation with damping: the critical case C.R. Acad. Sci. Paris 333 2 2001 109 114
    • (2001) C.R. Acad. Sci. Paris , vol.333 , Issue.2 , pp. 109-114
    • Zhang, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.