메뉴 건너뛰기




Volumn 3509, Issue , 2005, Pages 249-264

Randomized relaxation methods for the maximum feasible subsystem problem

Author keywords

[No Author keywords available]

Indexed keywords

BROADCASTING; COMPUTATION THEORY; COMPUTER SIMULATION; FUNCTIONS; ITERATIVE METHODS; LINEAR SYSTEMS; PROBABILITY; PROBLEM SOLVING; PROTEINS; TELECOMMUNICATION;

EID: 24944496727     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/11496915_19     Document Type: Conference Paper
Times cited : (20)

References (23)
  • 1
    • 24944576362 scopus 로고    scopus 로고
    • The maximum feasible subsystem problem and some applications
    • A. Agnetis and G. Di Pillo, editors, Pitagora Editrice Bologna
    • E. Amaldi. The maximum feasible subsystem problem and some applications. In A. Agnetis and G. Di Pillo, editors, Modelli e Algoritmi per l'ottimizzazione di sistemi complessi. Pitagora Editrice Bologna, 2003.
    • (2003) Modelli e Algoritmi per L'Ottimizzazione di Sistemi Complessi
    • Amaldi, E.1
  • 2
    • 24944575502 scopus 로고    scopus 로고
    • Boundedness theorems for the relaxation method
    • Under minor revision for available from Optimization Online
    • E. Amaldi and R. Hauser. Boundedness theorems for the relaxation method. Under minor revision for Mathematics of Oper. Res., available from Optimization Online.
    • Mathematics of Oper. Res.
    • Amaldi, E.1    Hauser, R.2
  • 3
    • 0029638653 scopus 로고
    • The complexity and approximability of finding maximum feasible subsystems of linear relations
    • E. Amaldi and V. Kann. The complexity and approximability of finding maximum feasible subsystems of linear relations. Theoretical Computer Science, 147:181-210, 1995.
    • (1995) Theoretical Computer Science , vol.147 , pp. 181-210
    • Amaldi, E.1    Kann, V.2
  • 4
    • 12444272680 scopus 로고    scopus 로고
    • On the maximum feasible subsystem problem, IISs and IIS-hypergraphs
    • E. Amaldi, M. E. Pfetsch, and L. E. Trotter Jr. On the maximum feasible subsystem problem, IISs and IIS-hypergraphs. Math. Programming A, 95:533-554, 2003.
    • (2003) Math. Programming A , vol.95 , pp. 533-554
    • Amaldi, E.1    Pfetsch, M.E.2    Trotter Jr., L.E.3
  • 6
    • 84968515689 scopus 로고
    • On the boundedness of an iterative procedure for solving a system of linear inequalities
    • H. D. Block and S. A. Levin. On the boundedness of an iterative procedure for solving a system of linear inequalities. In Proceedings of AMS, pages 229-235, 1970.
    • (1970) Proceedings of AMS , pp. 229-235
    • Block, H.D.1    Levin, S.A.2
  • 8
    • 0346452791 scopus 로고    scopus 로고
    • Fast heuristics for the maximum feasible subsystem problem
    • J. Chinneck. Fast heuristics for the maximum feasible subsystem problem. INFORMS Journal on Computing, 13:210-213, 2001.
    • (2001) INFORMS Journal on Computing , vol.13 , pp. 210-213
    • Chinneck, J.1
  • 9
    • 35048844632 scopus 로고    scopus 로고
    • Combinatorial benders' cuts
    • Proceedings of IPCO, . Springer
    • G. Codato and M. Fischetti. Combinatorial Benders' cuts. In Proceedings of IPCO, volume 3064 of LNCS, pages 178-195. Springer, 2004.
    • (2004) LNCS , vol.3064 , pp. 178-195
    • Codato, G.1    Fischetti, M.2
  • 10
    • 4544291740 scopus 로고    scopus 로고
    • A simple polynomial-time rescaling algorithm for solving linear programs. in
    • ACM Press
    • J. Dunagan and S. Vempala. A simple polynomial-time rescaling algorithm for solving linear programs. In Proceedings of STOC, pages 315-320. ACM Press, 2004.
    • (2004) Proceedings of STOC , pp. 315-320
    • Dunagan, J.1    Vempala, S.2
  • 11
    • 0007133880 scopus 로고
    • A "thermal" perceptron learning rule
    • M. Frean. A "thermal" perceptron learning rule. Neural Comp., 4(6):946-957, 1992.
    • (1992) Neural Comp. , vol.4 , Issue.6 , pp. 946-957
    • Frean, M.1
  • 12
    • 0019049551 scopus 로고
    • The relaxation method for solving systems of linear inequalities
    • J. L. Coffin. The relaxation method for solving systems of linear inequalities. Mathematics of Oper. Res., 5:388-414, 1980.
    • (1980) Mathematics of Oper. Res. , vol.5 , pp. 388-414
    • Coffin, J.L.1
  • 13
    • 0026175064 scopus 로고
    • Approaches to diagnosing infeasible linear programs
    • H. J. Greenberg and F. H. Murphy. Approaches to diagnosing infeasible linear programs. ORSA Journal on Computing, 3:253-261, 1991.
    • (1991) ORSA Journal on Computing , vol.3 , pp. 253-261
    • Greenberg, H.J.1    Murphy, F.H.2
  • 14
    • 0038513682 scopus 로고    scopus 로고
    • Planning implants of radionuclides for the treatment of prostate cancer: An application of MIP
    • E. K. Lee, R. J. Gallagher, and M. Zaider. Planning implants of radionuclides for the treatment of prostate cancer: An application of MIP. Optima, 61:1-7, 1999.
    • (1999) Optima , vol.61 , pp. 1-7
    • Lee, E.K.1    Gallagher, R.J.2    Zaider, M.3
  • 15
    • 0002224529 scopus 로고    scopus 로고
    • Machine learning via polyhedral concave minimization
    • H. Fischer et al., editor, Physica-Verlag
    • O. Mangasarian. Machine learning via polyhedral concave minimization. In H. Fischer et al., editor, Applied Mathematics and Parallel Computing, pages 175 - 188. Physica-Verlag, 1996.
    • (1996) Applied Mathematics and Parallel Computing , pp. 175-188
    • Mangasarian, O.1
  • 16
    • 34247106638 scopus 로고    scopus 로고
    • Fast line detection algorithms based on combinatorial optimization
    • LCNS 2059, Springer
    • M. Mattavelli, V. Noel, and E. Amaldi. Fast line detection algorithms based on combinatorial optimization. In Proceedings of IWVF, LCNS 2059, pages 410-419. Springer, 2001.
    • (2001) Proceedings of IWVF , pp. 410-419
    • Mattavelli, M.1    Noel, V.2    Amaldi, E.3
  • 17
    • 1842857770 scopus 로고    scopus 로고
    • Solving huge linear programming problems for the design of protein folding potentials
    • J. Meller, M. Wagner, and R. Elber. Solving huge linear programming problems for the design of protein folding potentials. Math. Programming B, 101:301-318, 2004.
    • (2004) Math. Programming B , vol.101 , pp. 301-318
    • Meller, J.1    Wagner, M.2    Elber, R.3
  • 19
    • 0036342213 scopus 로고    scopus 로고
    • Incremental subgradient methods for nondifferentiable optimization
    • A. Nedić and D. Bertsekas. Incremental subgradient methods for nondifferentiable optimization. SIAM J. on Optimization, 12:109-138, 2001.
    • (2001) SIAM J. on Optimization , vol.12 , pp. 109-138
    • Nedić, A.1    Bertsekas, D.2
  • 22
    • 0035565787 scopus 로고    scopus 로고
    • Models and algorithms for terrestrial digital broadcasting
    • F. Rossi, A. Sassano, and S. Smriglio. Models and algorithms for terrestrial digital broadcasting. Ann. of Oper. Res., 107(3):267-283, 2001.
    • (2001) Ann. of Oper. Res. , vol.107 , Issue.3 , pp. 267-283
    • Rossi, F.1    Sassano, A.2    Smriglio, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.