메뉴 건너뛰기




Volumn 47, Issue 1, 2004, Pages 126-136

A fast learning algorithm of neural network with tunable activation function

Author keywords

Learning algorithm; Neural networks; RLS algorithm; TAF neural model

Indexed keywords


EID: 24944496375     PISSN: 10092757     EISSN: None     Source Type: Journal    
DOI: 10.1360/02yf0263     Document Type: Review
Times cited : (12)

References (15)
  • 1
    • 7944223446 scopus 로고    scopus 로고
    • The neural model with tunable activation function and its supervised learning and application
    • Wu Youshou, Zhao Mingsheng, The neural model with tunable activation function and its supervised learning and application, Science in China (in Chinese), Ser. E, 2001, 31(3): 263-272.
    • (2001) Science in China (in Chinese), Ser. E , vol.31 , Issue.3 , pp. 263-272
    • Wu, Y.1    Zhao, M.2
  • 2
    • 24944440773 scopus 로고
    • Using spectral techniques for improved performance in ANN
    • Segee, B. E., Using spectral techniques for improved performance in ANN, Proc IEEE, 1993, 500-505.
    • (1993) Proc IEEE , pp. 500-505
    • Segee, B.E.1
  • 3
    • 0025839504 scopus 로고
    • A Gaussian potential function network with hierarchically self-organizing learning
    • Lee, S., Kil, R. M., A Gaussian potential function network with hierarchically self-organizing learning, Neural Network, 1991, 4: 207-224.
    • (1991) Neural Network , vol.4 , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 4
    • 0026953152 scopus 로고
    • How to solve the N-bit parity problem with two hidden units
    • Stork, D. G., Allen, J. D. et al., How to solve the N-bit parity problem with two hidden units, Neural Networks, 1992, 5: 923-926.
    • (1992) Neural Networks , vol.5 , pp. 923-926
    • Stork, D.G.1    Allen, J.D.2
  • 5
    • 0346435729 scopus 로고
    • A replay to Brown and Kom
    • Stork, D. G., A replay to Brown and Kom, Neural Networks, 1993, 6: 607-609.
    • (1993) Neural Networks , vol.6 , pp. 607-609
    • Stork, D.G.1
  • 7
    • 24944489249 scopus 로고    scopus 로고
    • The research on constructing some group neural networks by the known input signal
    • Wu, Y. S., The research on constructing some group neural networks by the known input signal. Science in China (in Chinese), Ser. E, 1996, 26(2): 140-144.
    • (1996) Science in China (in Chinese), Ser. E , vol.26 , Issue.2 , pp. 140-144
    • Wu, Y.S.1
  • 8
    • 0010323194 scopus 로고    scopus 로고
    • A new artificial neural network with tunable activation function and its application
    • Wu, Y. S., Zhao, M. S., Ding, X. Q., A new artificial neural network with tunable activation function and its application. Science in China (in Chinese), Ser. E, 1997, 27(1): 55-60.
    • (1997) Science in China (in Chinese), Ser. E , vol.27 , Issue.1 , pp. 55-60
    • Wu, Y.S.1    Zhao, M.S.2    Ding, X.Q.3
  • 9
    • 0030263568 scopus 로고    scopus 로고
    • A new perceptron model with tunable activation function
    • Wu Youshou, Zhao Mingsheng, Ding Xiaoqing, A new perceptron model with tunable activation function, Chinese Journal of Electronics, 1996, 5(2): 55-62.
    • (1996) Chinese Journal of Electronics , vol.5 , Issue.2 , pp. 55-62
    • Wu, Y.1    Zhao, M.2    Ding, X.3
  • 10
    • 0023331258 scopus 로고
    • An introduction to computing neural networks
    • Apr.
    • Lippmann, R. P., An introduction to computing neural networks, IEEE ASSP MAG., vol. 4. No. 2, Apr. 1987.
    • (1987) IEEE ASSP MAG , vol.4 , Issue.2
    • Lippmann, R.P.1
  • 12
    • 0026727333 scopus 로고
    • A fast new algorithm for training feedforward neural networks
    • Jan
    • Scalero, R. S., Tepedelenlioglu, N., A fast new algorithm for training feedforward neural networks, IEEE Trans On Signal Processing, Jan, 1992, 40(1): 203-210.
    • (1992) IEEE Trans on Signal Processing , vol.40 , Issue.1 , pp. 203-210
    • Scalero, R.S.1    Tepedelenlioglu, N.2
  • 13
    • 0026820187 scopus 로고
    • Fast learning process of multilayer neural networks using recursive least squares method
    • Feb
    • Azimi-Sadjadi, M. R., Liou, R.-J., Fast learning process of multilayer neural networks using recursive least squares method, IEEE Trans on Signal Processing, Feb, 1992, 40(2): 447-150.
    • (1992) IEEE Trans on Signal Processing , vol.40 , Issue.2 , pp. 447-1150
    • Azimi-Sadjadi, M.R.1    Liou, R.-J.2
  • 14
    • 0033640614 scopus 로고    scopus 로고
    • Robust recursive least squares learning algorithm for principal component analysis
    • Jan
    • Quyang Shan, Bao Zheng, Liao Gui-Sheng, Robust recursive least squares learning algorithm for principal component analysis, IEEE Trans. on Neural Networks, Jan 2000, 11(1): 215-221.
    • (2000) IEEE Trans. on Neural Networks , vol.11 , Issue.1 , pp. 215-221
    • Quyang, S.1    Bao, Z.2    Liao, G.-S.3
  • 15
    • 4544340804 scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall
    • Haykin, S., Adapt Filter Theory, Englewood Cliffs, NJ: Prentice-Hall, 1986.
    • (1986) Adapt Filter Theory
    • Haykin, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.