메뉴 건너뛰기




Volumn 6, Issue 1, 2005, Pages 72-84

Improving recognition and generalization capability of back-propagation NN using a self-organized network inspired by immune algorithm (SONIA)

Author keywords

Back propagation; Food quality prediction; Immune algorithm; Self organization

Indexed keywords

ALGORITHMS; BENCHMARKING; DATA REDUCTION; ERROR ANALYSIS; FOOD PRODUCTS; PATTERN RECOGNITION; QUALITY CONTROL; SELF ORGANIZING MAPS;

EID: 24944486724     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2004.10.008     Document Type: Article
Times cited : (55)

References (23)
  • 1
    • 0022471098 scopus 로고
    • Learning representations by error propagation
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams Learning representations by error propagation Nature 323 1986 533 536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 3
    • 0034271110 scopus 로고    scopus 로고
    • On over-fitting, generalization, and randomly expanded training sets
    • G.N. Karystinos, and D. Pados On over-fitting, generalization, and randomly expanded training sets IEEE Trans. Neural Netw. 11 5 2000 1050 1057
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.5 , pp. 1050-1057
    • Karystinos, G.N.1    Pados, D.2
  • 4
    • 0026624071 scopus 로고
    • Using additive noise in back-propagation training
    • L. Holmstrom, and P. Koistinen Using additive noise in back-propagation training IEEE Trans. Neural Netw. 3 1992 24 38
    • (1992) IEEE Trans. Neural Netw. , vol.3 , pp. 24-38
    • Holmstrom, L.1    Koistinen, P.2
  • 6
    • 0003505613 scopus 로고
    • Learning vector quantization for pattern recognition
    • Helsinki University of Technology, Finland
    • T. Kohonen, Learning Vector Quantization for Pattern Recognition, Technical Report TKK-F-A601, Helsinki University of Technology, Finland, 1986.
    • (1986) Technical Report , vol.TKK-F-A601
    • Kohonen, T.1
  • 7
    • 0030165512 scopus 로고    scopus 로고
    • Developments and applications of the self-organized map and related algorithms
    • J. Kangas, and T. Kohonen Developments and applications of the self-organized map and related algorithms Elsevier Math. Comput. Simul. 1996
    • (1996) Elsevier Math. Comput. Simul.
    • Kangas, J.1    Kohonen, T.2
  • 8
    • 0023981451 scopus 로고    scopus 로고
    • The ART of adaptive pattern recognition by a self-organizing neural network
    • G.A. Carpenter, and S. Grossberg The ART of adaptive pattern recognition by a self-organizing neural network Computer 1998 77 88
    • (1998) Computer , pp. 77-88
    • Carpenter, G.A.1    Grossberg, S.2
  • 9
    • 84973857317 scopus 로고
    • Self-organizing of stable category recognition codes for analog input patterns
    • G.A. Carpenter, and S. Grossberg Self-organizing of stable category recognition codes for analog input patterns Appl. Opt. 26 1987 4919 4930
    • (1987) Appl. Opt. , vol.26 , pp. 4919-4930
    • Carpenter, G.A.1    Grossberg, S.2
  • 10
    • 15944373500 scopus 로고    scopus 로고
    • Improving neural network models of physical system through dimensional analysis
    • D.J. Gunaratnam, T. Degroff, and J.S. Gero Improving neural network models of physical system through dimensional analysis Appl. Soft Comput. 2 2003 283 296
    • (2003) Appl. Soft Comput. , vol.2 , pp. 283-296
    • Gunaratnam, D.J.1    Degroff, T.2    Gero, J.S.3
  • 11
    • 0242634697 scopus 로고    scopus 로고
    • An immunity-based ant colony optimization algorithm for solving weapon - Target assignment problem
    • Z.J. Lee, C.Y. Lee, and S.F. Su An immunity-based ant colony optimization algorithm for solving weapon - target assignment problem Appl. Soft Comput. 2 2002 39 47
    • (2002) Appl. Soft Comput. , vol.2 , pp. 39-47
    • Lee, Z.J.1    Lee, C.Y.2    Su, S.F.3
  • 13
    • 0035966303 scopus 로고    scopus 로고
    • Extending the Kohonen self-organizing map network for clustering analysis
    • M.Y. Kiang Extending the Kohonen self-organizing map network for clustering analysis Comput. Stat. Data Anal. 38 2 2001 161 180
    • (2001) Comput. Stat. Data Anal. , vol.38 , Issue.2 , pp. 161-180
    • Kiang, M.Y.1
  • 16
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D.J.C. MacKay Bayesian interpolation Neural Comput. 4 3 1992 415 447
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 17
    • 2442486795 scopus 로고    scopus 로고
    • Soft-computing technologies for configuration of cooperative supply chain
    • A.V. Smirnov, L.B. Sheremetov, N. Chilov, and J.R. Cortes Soft-computing technologies for configuration of cooperative supply chain Appl. Soft Comput. 4 2004 87 107
    • (2004) Appl. Soft Comput. , vol.4 , pp. 87-107
    • Smirnov, A.V.1    Sheremetov, L.B.2    Chilov, N.3    Cortes, J.R.4
  • 22
    • 0005654536 scopus 로고
    • Use of time-temperature indicator as quality control devices for market milk
    • V.V. Mistry, and F.V. Kosikowski Use of time-temperature indicator as quality control devices for market milk J. Food Prot. 46 1 1983 52
    • (1983) J. Food Prot. , vol.46 , Issue.1 , pp. 52
    • Mistry, V.V.1    Kosikowski, F.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.