-
1
-
-
0344902741
-
-
Barton, D. H. R.; McCombie, S. W., J. Chem. Soc., Perkin Trans, 1 1975, 16, 1574-1585.
-
(1975)
J. Chem. Soc., Perkin Trans. 1
, vol.16
, pp. 1574-1585
-
-
Barton, D.H.R.1
McCombie, S.W.2
-
3
-
-
49049128445
-
-
(b) Hartwig, W. Tetrahedron 1983, 39, 2609-2645.
-
(1983)
Tetrahedron
, vol.39
, pp. 2609-2645
-
-
Hartwig, W.1
-
4
-
-
0025316936
-
-
Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. Tetrahedron Lett. 1990, 31, 3991-3994.
-
(1990)
Tetrahedron Lett.
, vol.31
, pp. 3991-3994
-
-
Barton, D.H.R.1
Jang, D.O.2
Jaszberenyi, J.C.3
-
5
-
-
0000089184
-
-
Barton, D. H. R.; Crich, D.; Lobberding, A.; Zard, S. Z. Tetrahedron 1986, 42, 2329-2338.
-
(1986)
Z. Tetrahedron
, vol.42
, pp. 2329-2338
-
-
Barton, D.H.R.1
Crich, D.2
Lobberding, A.3
Zard, S.4
-
6
-
-
24744466816
-
-
Barton, D. H. R.; Crich, D.; Lobberding, A.; Zard, S. Z. Chem. Commun. 1985, 10, 646-647.
-
(1985)
Z. Chem. Commun.
, vol.10
, pp. 646-647
-
-
Barton, D.H.R.1
Crich, D.2
Lobberding, A.3
Zard, S.4
-
7
-
-
0002838652
-
-
Bachi, M. D.; Bosch, E.; Denenmark, D.; Girsh, D. J. Org. Chem. 1992, 57, 6803-6810.
-
(1992)
J. Org. Chem.
, vol.57
, pp. 6803-6810
-
-
Bachi, M.D.1
Bosch, E.2
Denenmark, D.3
Girsh, D.4
-
9
-
-
37049090840
-
-
Bachi, M. D.; Bosch, E. J. Chem. Soc., Perkin Trans, 1 1988, 6, 1517-1519.
-
(1988)
J. Chem. Soc., Perkin Trans. 1
, vol.6
, pp. 1517-1519
-
-
Bachi, M.D.1
Bosch, E.2
-
12
-
-
2442711262
-
-
Dopp, E.; Hartmann, L. M.; Florea, A. M.; Rettenmeier, A. W.; Hirner, A. V. Crit. Rev. Toxicol. 2004, 34, 301-333.
-
(2004)
Crit. Rev. Toxicol.
, vol.34
, pp. 301-333
-
-
Dopp, E.1
Hartmann, L.M.2
Florea, A.M.3
Rettenmeier, A.W.4
Hirner, A.V.5
-
13
-
-
85080848604
-
-
For reviews, see: (a) Baguley, P. A.; Walton, J. C. Angew. Chem., Int. Ed. 1998, 37, 3073-3082.
-
(1998)
Angew. Chem., Int. Ed.
, vol.37
, pp. 3073-3082
-
-
Baguley, P.A.1
Walton, J.C.2
-
15
-
-
0036006066
-
-
(c) Gilbert, B. C.; Parsons, A. F. J. Chem. Soc., Perkin Trans. 2 2002, 2, 367-387.
-
(2002)
J. Chem. Soc., Perkin Trans. 2
, vol.2
, pp. 367-387
-
-
Gilbert, B.C.1
Parsons, A.F.2
-
16
-
-
0000829322
-
-
For lead references on stoichiometric tin hydride substitutes, see: for silanes (a) Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188.
-
(1992)
Acc. Chem. Res.
, vol.25
, pp. 188
-
-
Chatgilialoglu, C.1
-
17
-
-
33751385486
-
-
For phosphites: (b) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. J. Org. Chem. 1993, 58, 6838-6842.
-
(1993)
J. Org. Chem.
, vol.58
, pp. 6838-6842
-
-
Barton, D.H.R.1
Jang, D.O.2
Jaszberenyi, J.C.3
-
18
-
-
0038296125
-
-
and references contained therein.
-
For functionalized cyclohexadienes: (c) Studer, A.; Amrein, S.; Schleth, F.; Schulte, T.; Walton, J. C. J. Am. Chem. Soc. 2003, 125, 5726-5733 and references contained therein.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 5726-5733
-
-
Studer, A.1
Amrein, S.2
Schleth, F.3
Schulte, T.4
Walton, J.C.5
-
21
-
-
0030800209
-
-
For catalytic tin: (f) Lopez, R. M.; Hays, D. S.; Fu, G. C. J. Am. Chem. Soc. 1997, 119, 6949-6950.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 6949-6950
-
-
Lopez, R.M.1
Hays, D.S.2
Fu, G.C.3
-
22
-
-
24744441804
-
-
note
-
Reduction of 5, as described in ref 1. provided 8 in 78% yield.
-
-
-
-
23
-
-
24744452717
-
-
note
-
The reduction product was isolated in 62% yield versus 90% in reactions containing tributyltin hydride (ref 3). Further evidence for slow reduction under tin-free conditions was the isolation of products from radical recombination (9%) and disproportionation (12%).
-
-
-
-
25
-
-
0034647197
-
-
Walton, J. C.; McCarrroll, A. J.; Chen, Q.; Carboni, B.; Nziengui, R. J. Am. Chem. Soc. 2000, 122, 5455.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 5455
-
-
Walton, J.C.1
McCarrroll, A.J.2
Chen, Q.3
Carboni, B.4
Nziengui, R.5
-
26
-
-
24744463759
-
-
note
-
The full details of these sludies will be disclosed at a later date.
-
-
-
-
27
-
-
24744436078
-
-
note
-
13C NMR analysis, and neither workup or flask transfer was necessary for product purification, the possibility that a C-H bond in 5 or 8 was providing the H-atom in these reactions was discounted.
-
-
-
-
28
-
-
24744438335
-
-
note
-
For full details of these studies, please refer to the Supporting Information.
-
-
-
-
29
-
-
0037149752
-
-
For the BDE of water (H-OH), see: (a) Ruscic, B.; Wagner, A. F.; Harding, L. B.; Asher, R. L.; Feller, D.; Dixon, D. A.; Peterson, K. A.; Song, Y.; Qian, X.; Ng, C.-Y.; Liu, J.; Chen, W.; Schwenke, D. W. J. Phys. Chem. A 2002, 106, 2727.
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 2727
-
-
Ruscic, B.1
Wagner, A.F.2
Harding, L.B.3
Asher, R.L.4
Feller, D.5
Dixon, D.A.6
Peterson, K.A.7
Song, Y.8
Qian, X.9
Ng, C.-Y.10
Liu, J.11
Chen, W.12
Schwenke, D.W.13
-
30
-
-
0029639166
-
-
5). see: (b) Davico, G. E.; Bierbaum, V. M.; DePuy, C. H.; Ellison, G. B.; Squires, R. R. J. Am. Chem. Soc. 1995, 117, 2590.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 2590
-
-
Davico, G.E.1
Bierbaum, V.M.2
Depuy, C.H.3
Ellison, G.B.4
Squires, R.R.5
-
31
-
-
0034607894
-
-
To the best of our knowledge, the highest yield that has been reported for the deoxygenation of 12 is 86% (Togo, H.; Matsubayashi, S.; Yamazaki, O.; Yokoyama, M., J. Org. Chem. 2000, 65, 2816-2819).
-
(2000)
J. Org. Chem.
, vol.65
, pp. 2816-2819
-
-
Togo, H.1
Matsubayashi, S.2
Yamazaki, O.3
Yokoyama, M.4
-
32
-
-
0012154673
-
-
Curtiss, L. A.; Raghavachari, K.; Reforn, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109, 7764.
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 7764
-
-
Curtiss, L.A.1
Raghavachari, K.2
Reforn, P.C.3
Rassolov, V.4
Pople, J.A.5
-
33
-
-
0036250217
-
-
3-air mixtures. Substantial kinetic and/or mechanistic differences between these methods and the reductions reported herein are likely operating. For more detail on aqueous radical reactions, see: Yorimitsu, H.; Shinokubo, H.; Oshima. K. Synlett 2002, 5, 674-686.
-
(2002)
Synlett
, vol.5
, pp. 674-686
-
-
Yorimitsu, H.1
Shinokubo, H.2
Oshima, K.3
-
35
-
-
0032942428
-
-
3Sn-H bond has been reported at 78 kcal/mol (Laarhoven, L. J. J.; Mulder, P.; Wayner, D. D. M. Acc. Chem. Res. 1999, 32, 342-349).
-
(1999)
Acc. Chem. Res.
, vol.32
, pp. 342-349
-
-
Laarhoven, L.J.J.1
Mulder, P.2
Wayner, D.D.M.3
-
36
-
-
0000915956
-
-
Many of the examples in Table 2 required only substoichiometric oxygen, implying that a chain mechanism is operating. However, the uncontrolled entry of additional oxygen through rubber septa cannol be excluded at this time. Furthermore, the slow introduclion of air was critical to achieving high yields in these reactions, as observed in other trialkylborane-mediated free-radical processes. See, for example: (a) Brown, H. C.; Kabalka, G. W. J. Am. Chem. Soc. 1970, 92, 714-716.
-
(1970)
J. Am. Chem. Soc.
, vol.92
, pp. 714-716
-
-
Brown, H.C.1
Kabalka, G.W.2
-
37
-
-
0037462347
-
-
(b) Yoshimitsu, T.; Arano, Y.; Nagaoka, H. J. Org. Chem. 2003, 68, 625-627.
-
(2003)
J. Org. Chem.
, vol.68
, pp. 625-627
-
-
Yoshimitsu, T.1
Arano, Y.2
Nagaoka, H.3
-
38
-
-
0033533479
-
-
(c) Yoshimitsu, T.; Tsunoda, M.; Nagaoka, H. Chem. Commun. 1999, 17, 1745-1746.
-
(1999)
Chem. Commun.
, vol.17
, pp. 1745-1746
-
-
Yoshimitsu, T.1
Tsunoda, M.2
Nagaoka, H.3
-
39
-
-
0004181436
-
-
Academic Press: New York
-
The further observation that the reaction of xanthale 11 was completely inhibited by galvinoxyl suggests that the initial generation of alkyl radicals from trialkylboranes (Onak. T. Organoborane Chemistry; Academic Press: New York, 1975; p 360) is critical to the mechanism. The isolation of 24 (R′ = Bu) in 97% yield also supports the proposed mechanism.
-
(1975)
Organoborane Chemistry
, pp. 360
-
-
Onak, T.1
-
40
-
-
2342483850
-
-
2BOO•), this species, based upon its BDE (47.6 kcal/mol), would be capable of delivering hydrogen atom. See: Flowers. B. A.; Szalay, P. G.; Stanton, J. F.; Kállay: Gausss, J.; Csásár, A. G. J. Phys. Chem. A 2004, 108, 3195.
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 3195
-
-
Flowers, B.A.1
Szalay, P.G.2
Stanton, J.F.3
Kállay4
Gausss, J.5
Csásár, A.G.6
|