메뉴 건너뛰기




Volumn 41, Issue 5, 2005, Pages 496-505

Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for plane-strain state

Author keywords

Geometrical and physical nonlinearities; Nonlinear continuum mechanics; Nonlinear hyperelastic cylindrical waves; Plane strain state; Quadratically nonlinear wave equations; Rigorous approach

Indexed keywords

GEOMETRICAL AND PHYSICAL NONLINEARITIES; NONLINEAR CONTINUUM MECHANICS; NONLINEAR CYLINDRICAL HYPERELASTIC WAVES; PLAIN STRAIN STATE; QUADRATICALLY NONLINEAR WAVE EQUATIONS; RIGOROUS APPROACH;

EID: 24644491255     PISSN: 10637095     EISSN: 15738582     Source Type: Journal    
DOI: 10.1007/s10778-005-0115-3     Document Type: Review
Times cited : (25)

References (19)
  • 1
    • 24644431880 scopus 로고    scopus 로고
    • Tensor-basis expansion in the nonlinear theory of elasticity of cylindrical bodies
    • S. S. Grigoryan (ed.), Izd. Mosk. Univ., Moscow
    • Ya. I. Burak and P. P. Domanskii, "Tensor-basis expansion in the nonlinear theory of elasticity of cylindrical bodies," in: S. S. Grigoryan (ed.), Applied Problems in the Mechanics of Thin-Walled Structures [in Russian], Izd. Mosk. Univ., Moscow (2000), pp. 35-54.
    • (2000) Applied Problems in the Mechanics of Thin-walled Structures [in Russian] , pp. 35-54
    • Burak, Ya.I.1    Domanskii, P.P.2
  • 12
    • 3042720132 scopus 로고    scopus 로고
    • Cubically nonlinear elastic waves: Wave equations and methods of analysis
    • C. Cattani and J. J. Rushchitsky, "Cubically nonlinear elastic waves: Wave equations and methods of analysis," Int. Appl. Mech., 39, No. 10, 1115-1145 (2003).
    • (2003) Int. Appl. Mech. , vol.39 , Issue.10 , pp. 1115-1145
    • Cattani, C.1    Rushchitsky, J.J.2
  • 13
    • 3142772907 scopus 로고    scopus 로고
    • Cubically nonlinear versus quadratically elastic waves: Main wave effects
    • C. Cattani and J. J. Rushchitsky, "Cubically nonlinear versus quadratically elastic waves: main wave effects," Int. Appl. Mech., 39, No. 12, 1361-1399 (2003).
    • (2003) Int. Appl. Mech. , vol.39 , Issue.12 , pp. 1361-1399
    • Cattani, C.1    Rushchitsky, J.J.2
  • 14
    • 84953660195 scopus 로고
    • Three-dimensional investigation of the propagation of waves in hollow circular cylinders. Part I. Analytical foundation
    • D. C. Gazis, "Three-dimensional investigation of the propagation of waves in hollow circular cylinders. Part I. Analytical foundation," J. Acoust. Soc. America, 31, 568-573 (1959).
    • (1959) J. Acoust. Soc. America , vol.31 , pp. 568-573
    • Gazis, D.C.1
  • 15
    • 0000442469 scopus 로고
    • Axisymmetric and asymmetric wave motion in orthotropic cylinders
    • S. Markus and D. J. Mead, "Axisymmetric and asymmetric wave motion in orthotropic cylinders," J. Sound Vibr., 181, No. 1, 127-147 (1995).
    • (1995) J. Sound Vibr. , vol.181 , Issue.1 , pp. 127-147
    • Markus, S.1    Mead, D.J.2
  • 16
    • 84953656311 scopus 로고
    • Wave propagation in transversely isotropic circular cylinders. Part I. Theory
    • I. Mirsky, "Wave propagation in transversely isotropic circular cylinders. Part I. Theory," J. Acoust. Soc. America, 37, 1016-1021 (1965).
    • (1965) J. Acoust. Soc. America , vol.37 , pp. 1016-1021
    • Mirsky, I.1
  • 17
    • 0037782121 scopus 로고
    • Compressional waves along an anisotropic circular cylinder having hexagonal symmetry
    • R. W. Morse, "Compressional waves along an anisotropic circular cylinder having hexagonal symmetry," J. Acoust. Soc. America, 26, 1018-1021 (1954).
    • (1954) J. Acoust. Soc. America , vol.26 , pp. 1018-1021
    • Morse, R.W.1
  • 19
    • 3543072752 scopus 로고    scopus 로고
    • Cubically nonlinear waves in a piezoelastic material
    • J. J. Rushchitsky, S. V. Sinchilo, and I. N. Khotenko, "Cubically nonlinear waves in a piezoelastic material," Int. Appl. Mech., 40, No. 5, 557-564 (2004).
    • (2004) Int. Appl. Mech. , vol.40 , Issue.5 , pp. 557-564
    • Rushchitsky, J.J.1    Sinchilo, S.V.2    Khotenko, I.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.