메뉴 건너뛰기




Volumn 70, Issue 3, 2005, Pages 696-712

Minimal predicates, fixed-points, and definability

Author keywords

[No Author keywords available]

Indexed keywords


EID: 24644473661     PISSN: 00224812     EISSN: None     Source Type: Journal    
DOI: 10.2178/jsl/1122038910     Document Type: Article
Times cited : (27)

References (22)
  • 1
    • 77956968984 scopus 로고
    • An introduction to inductive definitions
    • [1977] (J. Barwise, editor), North-Holland. Amsterdam
    • [1977] P. ACZEL, An introduction to inductive definitions. Handbook of mathematical logic (J. Barwise, editor), North-Holland. Amsterdam. 1977, pp. 739-782.
    • (1977) Handbook of Mathematical Logic , pp. 739-782
    • Aczel, P.1
  • 4
    • 0039414416 scopus 로고
    • [1985] _, Lecture Notes, Philosophical Institute. Rijksuniversiteit Groningen
    • [1985] _, Logic programming, Lecture Notes, Philosophical Institute. Rijksuniversiteit Groningen, 1985.
    • (1985) Logic Programming
  • 5
    • 0003903884 scopus 로고    scopus 로고
    • [1996] _. CSLI Publications, Stanford, CA
    • [1996] _, Exploring logical dynamics. CSLI Publications, Stanford, CA, 1996.
    • (1996) Exploring Logical Dynamics
  • 6
    • 24644452968 scopus 로고    scopus 로고
    • Modal frame correspondence generalized
    • [2005] _, Preprint DARE 148523, Institute for Logic, Language and Computation, University of Amsterdam. To appear
    • [2005] _, Modal frame correspondence generalized. 2005, Preprint DARE 148523, Institute for Logic, Language and Computation, University of Amsterdam. Studia Logica. To appear.
    • (2005) Studia Logica
  • 7
    • 24644459756 scopus 로고    scopus 로고
    • A simple incomplete extension of T
    • [2002]
    • [2002] R. BENTON. A simple incomplete extension of T. Journal of Philosophical Logic, vol. 31 (2002), no. 6, pp. 527-541.
    • (2002) Journal of Philosophical Logic , vol.31 , Issue.6 , pp. 527-541
    • Benton, R.1
  • 12
    • 0009743963 scopus 로고
    • Quantifier elimination in second-order predicate logic
    • [1992]
    • [1992] D. GABBAY and H.J. OHLBACH. Quantifier elimination in second-order predicate logic. South African Computer Journal, vol. 7 (1992), pp. 35-43.
    • (1992) South African Computer Journal , vol.7 , pp. 35-43
    • Gabbay, D.1    Ohlbach, H.J.2
  • 13
    • 24644434893 scopus 로고    scopus 로고
    • [2003]. Department of Mathematics. Rand Afrikaans University, Johannesburg, 2003, and Faculty of Mathematics and Computer Science, Kliment Ohridski University, Sofia. Submitted for publication
    • [2003] V. GORANKO and D. VAKARELOV, Elementary canonical formulas L Extending Sahlqvist's theorem. Department of Mathematics. Rand Afrikaans University, Johannesburg, 2003, and Faculty of Mathematics and Computer Science, Kliment Ohridski University, Sofia. Submitted for publication.
    • Elementary Canonical Formulas L Extending Sahlqvist's Theorem
    • Goranko, V.1    Vakarelov, D.2
  • 14
    • 0036053446 scopus 로고    scopus 로고
    • The 0-1 law fails for frame satisfiability ofpropositional modal logic
    • [2002]
    • [2002] J.M. LE BARS, The 0-1 law fails for frame satisfiability ofpropositional modal logic. Proceedings of Logic in Computer Science, 2002.
    • (2002) Proceedings of Logic in Computer Science
    • Le Bars, J.M.1
  • 15
    • 24644475141 scopus 로고
    • Characterizing specification languages which admit initial semantics
    • [1983]. Springer, Berlin
    • [1983] B. MAHR and J. MAKOVSKY, Characterizing specification languages which admit initial semantics. Proceedings of the 8th CAAP. Springer, Berlin, 1983.
    • (1983) Proceedings of the 8th CAAP
    • Mahr, B.1    Makovsky, J.2
  • 17
    • 37349044608 scopus 로고
    • Circumscription - A form of nonmonotonic reasoning
    • [1980]
    • [1980] J. MCCARTHY. Circumscription - a form of nonmonotonic reasoning, Artificial Intelligence. vol. 13 (1980), pp. 27-39.
    • (1980) Artificial Intelligence , vol.13 , pp. 27-39
    • McCarthy, J.1
  • 19
    • 0040880586 scopus 로고    scopus 로고
    • A fixed-point approach to second-order quantifier elimination with applications to modal correspondence theory
    • [1999] (E. Orlowska, editor), Physica-Verlag, Heidelberg
    • [1999] A. NONNENGART and A. SZAŁAS. A fixed-point approach to second-order quantifier elimination with applications to modal correspondence theory. Logic at work (E. Orlowska, editor), Physica-Verlag, Heidelberg, 1999, pp. 89-108.
    • (1999) Logic at Work , pp. 89-108
    • Nonnengart, A.1    SzaŁas, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.