메뉴 건너뛰기




Volumn 345, Issue 1-3, 2005, Pages 69-87

Layered feedforward neural network is relevant to empirical physical formula construction: A theoretical analysis and some simulation results

Author keywords

Data analysis; Empirical physical formula; Experimental physics; Feedforward neural network; Method of sieves; Non linearity; Non parametric estimation

Indexed keywords

DATA REDUCTION; MULTILAYER NEURAL NETWORKS; NETWORK LAYERS; PARAMETER ESTIMATION; SIEVES;

EID: 24644471947     PISSN: 03759601     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physleta.2005.06.116     Document Type: Article
Times cited : (30)

References (28)
  • 16
    • 0004261364 scopus 로고    scopus 로고
    • Dover New York
    • H. Reichenbach The Direction of Time 1999 Dover New York originally published by University of California Press, Berkeley, 1956
    • (1999) The Direction of Time
    • Reichenbach, H.1
  • 17
    • 0003864761 scopus 로고
    • Dover New York
    • D. Bohm Quantum Theory 1989 Dover New York originally published by Prentice Hall, 1951
    • (1989) Quantum Theory
    • Bohm, D.1
  • 27
    • 0004332276 scopus 로고
    • Numerical Algorithms Group Limited Oxford
    • NAG Fortran Library. Numerical Algorithms Group Limited, vol. 7, Oxford, 1990
    • (1990) NAG Fortran Library , vol.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.