-
1
-
-
0000632786
-
Eight-vertex model in lattice statistics
-
R. J. Baxter, Eight-vertex model in lattice statistics, Phys. Rev. Letts. 26:832-833 (1971).
-
(1971)
Phys. Rev. Letts.
, vol.26
, pp. 832-833
-
-
Baxter, R.J.1
-
2
-
-
0011630061
-
Partition Function of the eight-vertex model
-
R. J. Baxter, Partition Function of the eight-vertex model, Ann. Phys. 70:193-228 (1972).
-
(1972)
Ann. Phys.
, vol.70
, pp. 193-228
-
-
Baxter, R.J.1
-
3
-
-
0002152395
-
Eight-vertex model in lattice statistics and the one-dimensional anisotropic Heisenberg chain I. Some fundamental eigenvectors
-
R. J. Baxter, Eight-vertex model in lattice statistics and the one-dimensional anisotropic Heisenberg chain I. Some fundamental eigenvectors, Ann. Phys. 76:1-23 (1973).
-
(1973)
Ann. Phys.
, vol.76
, pp. 1-23
-
-
Baxter, R.J.1
-
4
-
-
49549172862
-
Eight-vertex model in lattice statistics and the one-dimensional anisotropic Heisenberg chain II. Equivalence to a generalized ice-type lattice model
-
R. J. Baxter, Eight-vertex model in lattice statistics and the one-dimensional anisotropic Heisenberg chain II. Equivalence to a generalized ice-type lattice model, Ann. Phys. 76:25-47 (1973).
-
(1973)
Ann. Phys.
, vol.76
, pp. 25-47
-
-
Baxter, R.J.1
-
5
-
-
49549168660
-
Eight-vertex model in lattice statistics and the one-dimensional anisotropic Heisenberg chain III, Eigenvectors of the transfer matrix and Hamiltonian
-
R. J. Baxter, Eight-vertex model in lattice statistics and the one-dimensional anisotropic Heisenberg chain III, Eigenvectors of the transfer matrix and Hamiltonian, Ann. Phys. 76:48-70 (1973).
-
(1973)
Ann. Phys.
, vol.76
, pp. 48-70
-
-
Baxter, R.J.1
-
7
-
-
0002672713
-
Solving models in statistical mechanics
-
R. J. Baxter, Solving models in statistical mechanics, Adv. Stud. Pure Math. 19 (1989) 95.
-
(1989)
Adv. Stud. Pure Math.
, vol.19
, pp. 95
-
-
Baxter, R.J.1
-
8
-
-
0036262016
-
Completeness of the Bethe ansatz for the six and eight vertex models
-
R. J. Baxter, Completeness of the Bethe ansatz for the six and eight vertex models, J. Stat. Phys. 108:1-48 (2002).
-
(2002)
J. Stat. Phys.
, vol.108
, pp. 1-48
-
-
Baxter, R.J.1
-
9
-
-
0031549912
-
Integrable structure of conformal field theory II. Q-operator and DDV equation
-
V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, Integrable structure of conformal field theory II. Q-operator and DDV equation, Comm. Math. Phys. 190:247-278 (1997).
-
(1997)
Comm. Math. Phys.
, vol.190
, pp. 247-278
-
-
Bazhanov, V.V.1
Lukyanov, S.L.2
Zamolodchikov, A.B.3
-
10
-
-
0033248351
-
Integrable structure of conformal field theory III.The Yang-baxter equation
-
V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, Integrable structure of conformal field theory III.the Yang-Baxter equation, Comm. Math. Phys. 200:297-324 (1999).
-
(1999)
Comm. Math. Phys.
, vol.200
, pp. 297-324
-
-
Bazhanov, V.V.1
Lukyanov, S.L.2
Zamolodchikov, A.B.3
-
12
-
-
0035537477
-
Completing Bethe equations at roots of unity
-
K. Fabricius and B. M. McCoy, Completing Bethe equations at roots of unity, J. Stat. Phys. 104:573-587 (2001).
-
(2001)
J. Stat. Phys.
, vol.104
, pp. 573-587
-
-
Fabricius, K.1
McCoy, B.M.2
-
13
-
-
0035536310
-
Bethe's equation is incomplete for the XXZ model at roots of Unity
-
K. Fabricius and B. M. McCoy, Bethe's equation is incomplete for the XXZ model at roots of Unity, J. Stat. Phys. 103:647-678 (2001).
-
(2001)
J. Stat. Phys.
, vol.103
, pp. 647-678
-
-
Fabricius, K.1
McCoy, B.M.2
-
14
-
-
0242323424
-
Evaluation parameters and Bethe roots for the six-vertex model at roots of unity
-
M. Kashiwara and T. Miwa, eds. (Birkhauser, Boston)
-
K. Fabricius and B. M. McCoy, Evaluation parameters and Bethe roots for the six-vertex model at roots of unity, in Progress in Mathematical Physics Vol. 23, M. Kashiwara and T. Miwa, eds. (Birkhauser, Boston, 2002) pp. 119-144.
-
(2002)
Progress in Mathematical Physics
, vol.23
, pp. 119-144
-
-
Fabricius, K.1
McCoy, B.M.2
-
15
-
-
0037276424
-
New Developments in the eight vertex model
-
K. Fabricius and B. M. McCoy, New Developments in the eight vertex model, J. Stat. Phys. 111:323-337 (2003).
-
(2003)
J. Stat. Phys.
, vol.111
, pp. 323-337
-
-
Fabricius, K.1
McCoy, B.M.2
-
16
-
-
0345475341
-
-
Am. Math. Soc. Providence Rhode Island
-
H. Farkas and I. Kra, Theta Constants, Riemann Surfaces and the Modular Group, Graduate Studies in Mathematics, Vol. 37 (Am. Math. Soc. Providence Rhode Island, 2001).
-
(2001)
Theta Constants, Riemann Surfaces and the Modular Group, Graduate Studies in Mathematics
, vol.37
-
-
Farkas, H.1
Kra, I.2
-
17
-
-
0035981749
-
The XXZ spin chain at Δ = -1/2; Bethe roots, symmetric functions and determinants
-
J. de Gier, M. T. Batchelor, B. Nienhuis, and S. Mitra, The XXZ spin chain at Δ = -1/2; Bethe roots, symmetric functions and determinants, J. Math. Phys. 43:4135-4146 (2002).
-
(2002)
J. Math. Phys.
, vol.43
, pp. 4135-4146
-
-
De Gier, J.1
Batchelor, M.T.2
Nienhuis, B.3
Mitra, S.4
-
20
-
-
0041048843
-
Quantum integrable models and discrete classical Hirota equations
-
I. Krichever, O. Lipan, P. Wiegmann and A. Zabrodin, Quantum integrable models and discrete classical Hirota equations, Comm. Math. Phys. 188:267-304 (1997).
-
(1997)
Comm. Math. Phys.
, vol.188
, pp. 267-304
-
-
Krichever, I.1
Lipan, O.2
Wiegmann, P.3
Zabrodin, A.4
-
21
-
-
0033605475
-
Bethe equations "on the wrong side of the equator"
-
G. P. Pronko and Yu. G. Stroganov, Bethe equations "on the wrong side of the equator", J. Phys. A 32:2333-2340 (1999).
-
(1999)
J. Phys. A
, vol.32
, pp. 2333-2340
-
-
Pronko, G.P.1
Stroganov, Yu.G.2
-
22
-
-
0035853651
-
Spin chains and combinatorics
-
A. V. Razumov and Yu. G. Stroganov, Spin chains and combinatorics, J. Phys. A 34:3185-3190 (2001).
-
(2001)
J. Phys. A
, vol.34
, pp. 3185-3190
-
-
Razumov, A.V.1
Stroganov, Yu.G.2
-
23
-
-
0035815590
-
The importance of being odd
-
Yu. Stroganov, The importance of being odd, J. Phys. A 34:L179-L185 (2001).
-
(2001)
J. Phys. A
, vol.34
-
-
Stroganov, Yu.1
|