-
1
-
-
0005235678
-
A topological invariant arising in the stability analysis of travelling waves
-
ALEXANDER, J., GARDNER, R., JONES, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167-212 (1990)
-
(1990)
J. Reine Angew. Math.
, vol.410
, pp. 167-212
-
-
Alexander, J.1
Gardner, R.2
Jones, C.3
-
2
-
-
0001191104
-
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
-
BONY, J-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14, 209-246 (1981)
-
(1981)
Ann. Sci. École Norm. Sup. (4)
, vol.14
, pp. 209-246
-
-
Bony, J.-M.1
-
4
-
-
0141686317
-
Ekman boundary layers in rotating fluids
-
CHEMIN, J-Y., DESJARDINS, B., GALLAGHER, I., GRENIER, E.: Ekman boundary layers in rotating fluids. ESAIM Control Optim. Calc. Var. 8, 441-446 (2002)
-
(2002)
ESAIM Control Optim. Calc. Var.
, vol.8
, pp. 441-446
-
-
Chemin, J.-Y.1
Desjardins, B.2
Gallagher, I.3
Grenier, E.4
-
5
-
-
0033096493
-
Stability of mixed Ekman-Hartmann boundary layers
-
DESJARDINS, B., DORMY, E., GRENIER, E.: Stability of mixed Ekman-Hartmann boundary layers. Nonlinearity 12, 181-199 (1999)
-
(1999)
Nonlinearity
, vol.12
, pp. 181-199
-
-
Desjardins, B.1
Dormy, E.2
Grenier, E.3
-
6
-
-
0347354928
-
Linear instability implies nonlinear instability for various boundary layers
-
DESJARDINS, B., GRENIER, E.: Linear instability implies nonlinear instability for various boundary layers. Ann. Inst. H. Poincaré Anal Non Linéaire 20, 87-106 (2003)
-
(2003)
Ann. Inst. H. Poincaré Anal Non Linéaire
, vol.20
, pp. 87-106
-
-
Desjardins, B.1
Grenier, E.2
-
7
-
-
0040942605
-
The gap lemma and geometric criteria for instability of viscous shock profiles
-
GARDNER, R.A., ZUMBRUN, K.: The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51, 797-855 (1998)
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, pp. 797-855
-
-
Gardner, R.A.1
Zumbrun, K.2
-
8
-
-
0141637135
-
A geometric optics approach to fluid boundary layers
-
GÉRARD-VARET, D.: A geometric optics approach to fluid boundary layers. Comm. Partial Differential Equations 28, 1605-1626 (2003)
-
(2003)
Comm. Partial Differential Equations
, vol.28
, pp. 1605-1626
-
-
Gérard-Varet, D.1
-
10
-
-
0001052077
-
Ekman layers of rotating fluids, the case of well prepared initial data
-
GRENIER, E., MASMOUDI, N.: Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations 22, 953-975 (1997)
-
(1997)
Comm. Partial Differential Equations
, vol.22
, pp. 953-975
-
-
Grenier, E.1
Masmoudi, N.2
-
11
-
-
0035537785
-
Stability of one-dimensional boundary layers by using Green's functions
-
GRENIER, E., ROUSSET, F.: Stability of one-dimensional boundary layers by using Green's functions. Comm. Pure Appl. Math. 54, 1343-1385 (2001)
-
(2001)
Comm. Pure Appl. Math.
, vol.54
, pp. 1343-1385
-
-
Grenier, E.1
Rousset, F.2
-
12
-
-
2442542401
-
Multidimensional viscous shocks II: The small viscosity limit
-
GUÉS, O., MÉTIVIER, G., WILLIAMS, M., ZUMBRUN, K.: Multidimensional viscous shocks II: the small viscosity limit. Comm. Pure Appl. Math. 57, 141-218 (2004)
-
(2004)
Comm. Pure Appl. Math.
, vol.57
, pp. 141-218
-
-
Gués, O.1
Métivier, G.2
Williams, M.3
Zumbrun, K.4
-
13
-
-
84980172444
-
Initial boundary value problems for hyperbolic systems
-
KREISS, H.-O.: Initial boundary value problems for hyperbolic systems. Comm. Pure & Appl. Math. 23, 277-298 (1970)
-
(1970)
Comm. Pure & Appl. Math.
, vol.23
, pp. 277-298
-
-
Kreiss, H.-O.1
-
14
-
-
0003542747
-
-
Academic Press Inc., Boston, MA
-
KREISS, H.-O., LORENZ, J.: Initial-boundary value problems and the Navier-Stokes equations. Academic Press Inc., Boston, MA, 1989
-
(1989)
Initial-boundary Value Problems and the Navier-Stokes Equations
-
-
Kreiss, H.-O.1
Lorenz, J.2
-
15
-
-
0001452726
-
On the instability of Ekman boundary flow
-
LILLY, D.K.: On the instability of Ekman boundary flow. J. Atmos. Sci. 23, 481-494 (1966)
-
(1966)
J. Atmos. Sci.
, vol.23
, pp. 481-494
-
-
Lilly, D.K.1
-
16
-
-
0034383413
-
Ekman layers of rotating fluids: The case of general initial data
-
MASMOUDI, N.: Ekman layers of rotating fluids: the case of general initial data. Comm. Pure Appl. Math. 53, 432-483 (2000)
-
(2000)
Comm. Pure Appl. Math.
, vol.53
, pp. 432-483
-
-
Masmoudi, N.1
-
17
-
-
0013017916
-
Stability of multidimensional shocks
-
Birkhäuser Boston, Boston, MA
-
MÉTIVIER, G.: Stability of multidimensional shocks. In: Advances in the theory of shock waves, volume 47 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 2001, pp. 25-103
-
(2001)
Advances in the Theory of Shock Waves, Volume 47 of Progr. Nonlinear Differential Equations Appl.
, pp. 25-103
-
-
Métivier, G.1
-
22
-
-
1642587248
-
Viscous limits for strong shocks of systems of conservation laws
-
ROUSSET, F.: Viscous limits for strong shocks of systems of conservation laws. SIAM J. Math. Anal. 35, 492-519 (2003)
-
(2003)
SIAM J. Math. Anal.
, vol.35
, pp. 492-519
-
-
Rousset, F.1
-
23
-
-
2442653611
-
-
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition
-
TEMAM, R.: Navier-Stokes equations and nonlinear functional analysis, volume 66 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 1995
-
(1995)
Navier-Stokes Equations and Nonlinear Functional Analysis, Volume 66 of CBMS-NSF Regional Conference Series in Applied Mathematics
, vol.66
-
-
Temam, R.1
-
24
-
-
0001028485
-
Viscous and inviscid stability of multidimensional planar shock fronts
-
ZUMBRUN, K., SERRE, D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937-992 (1999)
-
(1999)
Indiana Univ. Math. J.
, vol.48
, pp. 937-992
-
-
Zumbrun, K.1
Serre, D.2
|