-
1
-
-
0001817861
-
Data networks as cascades: Investigating the multifractal nature of Internet WAN traffic
-
Vancouver, Canada: ACM/SIG-COMM'98
-
Feldmann A, Gilbert A C, et al. Data networks as cascades: Investigating the multifractal nature of Internet. WAN traffic[A]. ACM/SIG-COMM'98[C]. Vancouver, Canada: ACM/SIG-COMM'98, 1998, 25-38.
-
(1998)
ACM/SIG-COMM'98
, pp. 25-38
-
-
Feldmann, A.1
Gilbert, A.C.2
-
2
-
-
0006797495
-
The changing nature of network traffic: Scaling phenomena
-
Feldmann A, Gilbert A C, et al. The changing nature of network traffic: Scaling phenomena[J]. Computer Communication Review, 1998, 28(2): 5-29.
-
(1998)
Computer Communication Review
, vol.28
, Issue.2
, pp. 5-29
-
-
Feldmann, A.1
Gilbert, A.C.2
-
3
-
-
0032625224
-
Scaling analysis of random cascade, with applications to network traffic
-
Gilbert A C, et al. Scaling Analysis of random cascade, with applications to network traffic[J]. IEEE Trans. Inform, Theory, 1999, 45(3): 971-991.
-
(1999)
IEEE Trans. Inform. Theory
, vol.45
, Issue.3
, pp. 971-991
-
-
Gilbert, A.C.1
-
4
-
-
0032686283
-
A multifractal wavelet model with applications to network traffic
-
Riedi R, et al. A multifractal wavelet model with applications to network traffic[J]. IEEE Trans. Inform, Theory, 1999, 45(3): 991-1018.
-
(1999)
IEEE Trans. Inform. Theory
, vol.45
, Issue.3
, pp. 991-1018
-
-
Riedi, R.1
-
5
-
-
0003440974
-
Multifractal properties of TCP traffic: A numerical study
-
INRIA research report 3129
-
Riedi R, Levy Vehel J. Multifractal Properties of TCP traffic: A numerical Study[R]. INRIA research report 3129, 1997.
-
(1997)
-
-
Riedi, R.1
Levy Vehel, J.2
-
6
-
-
0000779360
-
Detecting strange attractors in turbulence
-
Takens F. Detecting strange attractors in turbulence[J]. Lecture Notes in Math, 1981, (898): 366-381.
-
(1981)
Lecture Notes in Math
, Issue.898
, pp. 366-381
-
-
Takens, F.1
-
7
-
-
35949021230
-
Geometry from a time series
-
Packard N H, Cratchfield J P, Farmer J D, Shaw R S. Geometry from a time series[J]. Phys. Rev. Lett, 1980, 45: 712-716.
-
(1980)
Phys. Rev. Lett
, vol.45
, pp. 712-716
-
-
Packard, N.H.1
Cratchfield, J.P.2
Farmer, J.D.3
Shaw, R.S.4
-
8
-
-
0000805615
-
Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors
-
Buzug T, et al. Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors[J]. Phys Rev A, 1992, 45: 7073-7084.
-
(1992)
Phys. Rev. A
, vol.45
, pp. 7073-7084
-
-
Buzug, T.1
-
9
-
-
2442643077
-
-
Chinese source
-
-
-
-
10
-
-
35949006791
-
Determining embedding dimension for phase space reconstruction using a geometrical construction
-
Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase space reconstruction using a geometrical construction[J]. Phys Rev, 1992, A45: 3405-3415.
-
(1992)
Phys. Rev.
, vol.A45
, pp. 3405-3415
-
-
Kennel, M.B.1
Brown, R.2
Abarbanel, H.D.I.3
-
11
-
-
0001874436
-
Practical method for determining embedding dimension of a scalar time series
-
Cao, LiangYue. Practical method for determining embedding dimension of a scalar time series[J]. Physica D, 1997, 110: 43-50.
-
(1997)
Physica D
, vol.110
, pp. 43-50
-
-
Cao, L.1
-
12
-
-
48549112428
-
Dimension and entropy of strange attractors from a fluctuating dynamics approach
-
Grassberger P, Procaccia I. Dimension and entropy of strange attractors from a fluctuating dynamics approach[J]. Physica, 1984, 13D: 34.
-
(1984)
Physica
, vol.13 D
, pp. 34
-
-
Grassberger, P.1
Procaccia, I.2
-
13
-
-
0008494528
-
Determining Lyapunov exponents from a time series
-
Wolf J B, et al. Determining lyapunov exponents from a time series[J]. Physica D, 1985, 16: 285-317.
-
(1985)
Physica D
, vol.16
, pp. 285-317
-
-
Wolf, J.B.1
-
14
-
-
43949166788
-
A practical method for calculating largest lyapunov exponents from small data sets
-
Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest lyapunov exponents from small data sets[J]. Physica D, 1993, 65(1): 117-134.
-
(1993)
Physica D
, vol.65
, Issue.1
, pp. 117-134
-
-
Rosenstein, M.T.1
Collins, J.J.2
de Luca, C.J.3
-
15
-
-
0001870258
-
A robust method to estimate the maximal Lyapunov exponent of a time series
-
Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series[J]. Physics Letters A, 1994, 185: 77.
-
(1994)
Physics Letters A
, vol.185
, pp. 77
-
-
Kantz, H.1
-
16
-
-
0004263139
-
-
San Francisco CA Freeman: W. H. Freeman and Co
-
Mandelbrot B B. The fractal geometry of nature[C]. San Francisco CA Freeman: W. H. Freeman and Co, 1982, 1-20.
-
(1982)
The Fractal Geometry of Nature
, pp. 1-20
-
-
Mandelbrot, B.B.1
-
17
-
-
0026397924
-
A multifractal-based approach to natural scene analysis
-
NY, USA IEEE
-
Arduini F, Fioravanti S, Giusto D D. A multifractal-based approach to natural scene analysis[A]. CCECE' 91[C]. NY, USA: International Conference on Acoustics Speech and Signal Processing, IEEE, 1991, 2681-2684.
-
(1991)
International Conference on Acoustics Speech and Signal Processing, CCECE' 91
, pp. 2681-2684
-
-
Arduini, F.1
Fioravanti, S.2
Giusto, D.D.3
|