메뉴 건너뛰기




Volumn 17, Issue 3, 2004, Pages 851-866

On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth

Author keywords

[No Author keywords available]

Indexed keywords


EID: 2442691792     PISSN: 09517715     EISSN: None     Source Type: Journal    
DOI: 10.1088/0951-7715/17/3/007     Document Type: Article
Times cited : (27)

References (23)
  • 1
    • 0009182528 scopus 로고
    • Solutions d'equations elliptiques avec exposant de Sobolev critique qui changent de signe
    • Atkinson F V, Brezis H and Peletier L A 1988 Solutions d'equations elliptiques avec exposant de Sobolev critique qui changent de signe C. R. Acad. Sci. Paris 306 711-14
    • (1988) C. R. Acad. Sci. Paris , vol.306 , pp. 711-714
    • Atkinson, F.V.1    Brezis, H.2    Peletier, L.A.3
  • 2
    • 38249017964 scopus 로고
    • Nodal solutions of elliptic equations with critical Sobolev exponents
    • Atkinson F V, Brezis H and Peletier L A 1990 Nodal solutions of elliptic equations with critical Sobolev exponents J. Diff. Eqns 85 151-70
    • (1990) J. Diff. Eqns , vol.85 , pp. 151-170
    • Atkinson, F.V.1    Brezis, H.2    Peletier, L.A.3
  • 3
    • 84972498579 scopus 로고
    • Problemes isoperimetriques et espaces de Sobolev
    • Aubin T 1976 Problemes isoperimetriques et espaces de Sobolev J. Diff. Geom. 11 573-98
    • (1976) J. Diff. Geom. , vol.11 , pp. 573-598
    • Aubin, T.1
  • 4
    • 0003007474 scopus 로고
    • On a variational problem with lack of compactness: The topological effect of the critical points at infinity
    • Bahri A, Li Y and Rey O 1995 On a variational problem with lack of compactness: the topological effect of the critical points at infinity Calc. Variat. 3 67-93
    • (1995) Calc. Variat. , vol.3 , pp. 67-93
    • Bahri, A.1    Li, Y.2    Rey, O.3
  • 5
    • 0035922965 scopus 로고    scopus 로고
    • Critical point theory on partially ordered Hilbert spaces
    • Bausch T 2001 Critical point theory on partially ordered Hilbert spaces J. Funct. Anal. 186 117-52
    • (2001) J. Funct. Anal. , vol.186 , pp. 117-152
    • Bausch, T.1
  • 6
    • 0002327136 scopus 로고
    • A note on the Sobolev inequality
    • Blanchi G and Egnell H 1991 A note on the Sobolev inequality J. Funct. Anal. 100 18-24
    • (1991) J. Funct. Anal. , vol.100 , pp. 18-24
    • Blanchi, G.1    Egnell, H.2
  • 7
    • 84990613834 scopus 로고
    • Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
    • Brézis H and Nirenberg L 1983 Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents Commun. Pure Appl. Math. 36 437-77
    • (1983) Commun. Pure Appl. Math. , vol.36 , pp. 437-477
    • Brézis, H.1    Nirenberg, L.2
  • 8
    • 84990617031 scopus 로고
    • Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth
    • Caffarelli L, Gidas B and Spruck J 1989 Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth Commun. Pure Appl. Math. 42 271-97
    • (1989) Commun. Pure Appl. Math. , vol.42 , pp. 271-297
    • Caffarelli, L.1    Gidas, B.2    Spruck, J.3
  • 9
    • 0242308187 scopus 로고    scopus 로고
    • The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain
    • Castro A and Clapp M 2003 The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain Nonlinearity 16 579-90
    • (2003) Nonlinearity , vol.16 , pp. 579-590
    • Castro, A.1    Clapp, M.2
  • 10
    • 0000734186 scopus 로고
    • Some existence results for superlinear elliptic boundary value problems involving critical exponents
    • Cerami G, Solimini S and Struwe M 1986 Some existence results for superlinear elliptic boundary value problems involving critical exponents J. Funct. Anal. 69 298-306
    • (1986) J. Funct. Anal. , vol.69 , pp. 298-306
    • Cerami, G.1    Solimini, S.2    Struwe, M.3
  • 11
    • 0344862718 scopus 로고    scopus 로고
    • Concentration estimates and multiple solutions to elliptic problems at critical growth
    • Devillanova G and Solimini S 2002 Concentration estimates and multiple solutions to elliptic problems at critical growth Adv. Diff. Eqns 7 1257-80
    • (2002) Adv. Diff. Eqns , vol.7 , pp. 1257-1280
    • Devillanova, G.1    Solimini, S.2
  • 12
    • 0037397555 scopus 로고    scopus 로고
    • A multiplicity result for elliptic equations at critical growth in low dimension
    • Devillanova G and Solimini S 2003 A multiplicity result for elliptic equations at critical growth in low dimension Commun. Contemp. Math. 5 171-7
    • (2003) Commun. Contemp. Math. , vol.5 , pp. 171-177
    • Devillanova, G.1    Solimini, S.2
  • 13
    • 84976114794 scopus 로고
    • Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains
    • Fortunato D and Jannelli E 1987 Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains Proc. R. Soc. Edin. 105 205-13
    • (1987) Proc. R. Soc. Edin. , vol.105 , pp. 205-213
    • Fortunato, D.1    Jannelli, E.2
  • 14
    • 84903853123 scopus 로고
    • Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent
    • Han Z C 1991 Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent Ann. Ann. H Poincaré 8 159-74
    • (1991) Ann. Ann. H Poincaré , vol.8 , pp. 159-174
    • Han, Z.C.1
  • 15
    • 38149148299 scopus 로고
    • Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth
    • Hebey E and Vaugon M 1994 Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth J. Funct. Anal. 119 298-318
    • (1994) J. Funct. Anal. , vol.119 , pp. 298-318
    • Hebey, E.1    Vaugon, M.2
  • 17
    • 0000217595 scopus 로고
    • Radial solutions of a semilinear elliptic equation at a critical exponent
    • Jones C 1988 Radial solutions of a semilinear elliptic equation at a critical exponent Arch. Rat. Mech. Anal. 104 251-70
    • (1988) Arch. Rat. Mech. Anal. , vol.104 , pp. 251-270
    • Jones, C.1
  • 18
    • 38249012711 scopus 로고
    • Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth: II. The nonradial case
    • Merle F and Peletier L A 1992 Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth: II. The nonradial case J. Funct. Anal. 105 1-41
    • (1992) J. Funct. Anal. , vol.105 , pp. 1-41
    • Merle, F.1    Peletier, L.A.2
  • 19
    • 2442663646 scopus 로고    scopus 로고
    • Concentration phenomena in elliptic problems with critical and supercritical growth
    • Molle R and Pistoia A 2003 Concentration phenomena in elliptic problems with critical and supercritical growth Adv. Diff. Eqns 8 547-70
    • (2003) Adv. Diff. Eqns , vol.8 , pp. 547-570
    • Molle, R.1    Pistoia, A.2
  • 20
    • 0036058814 scopus 로고    scopus 로고
    • Multispike solutions for a nonlinear elliptic problem involving critical Sobolev exponent
    • Musso M and Pistoia A 2002 Multispike solutions for a nonlinear elliptic problem involving critical Sobolev exponent Indiana Univ. Math. J. 5 541-79
    • (2002) Indiana Univ. Math. J. , vol.5 , pp. 541-579
    • Musso, M.1    Pistoia, A.2
  • 21
    • 0002432857 scopus 로고
    • Proof of two conjectures of H Brezis and L A Peletier
    • Rey O 1989 Proof of two conjectures of H Brezis and L A Peletier Manus. Math. 65 19-37
    • (1989) Manus. Math. , vol.65 , pp. 19-37
    • Rey, O.1
  • 22
    • 0002944738 scopus 로고
    • The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent
    • Rey O 1990 The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent J. Funct. Anal. 89 1-52
    • (1990) J. Funct. Anal. , vol.89 , pp. 1-52
    • Rey, O.1
  • 23
    • 34250392866 scopus 로고
    • Best constants in Sobolev inequality
    • Talenti G 1976 Best constants in Sobolev inequality Am. Mat. Pure Appl. 110 353-72
    • (1976) Am. Mat. Pure Appl. , vol.110 , pp. 353-372
    • Talenti, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.