-
1
-
-
0031518164
-
A class of integrable hamiltonian systems whose solutions are (perhaps) all completely periodic
-
Calogero, F. 1997. A class of integrable hamiltonian systems whose solutions are (perhaps) all completely periodic. J. Math. Phys., 38:5711–5719.
-
(1997)
J. Math. Phys.
, vol.38
, pp. 5711-5719
-
-
Calogero, F.1
-
3
-
-
0037185453
-
Periodic solutions of a system of complex ODEs
-
Calogero, F. 2002. Periodic solutions of a system of complex ODEs. Phys. Lett., A293:146–150.
-
(2002)
Phys. Lett.
, vol.A293
, pp. 146-150
-
-
Calogero, F.1
-
4
-
-
0036477801
-
On a modified version of a solvable ODE due to Painlevé
-
Calogero, F. 2002. On a modified version of a solvable ODE due to Painlevé. J. Phys. A:Math. Gen., 35:985–992.
-
(2002)
J. Phys. A: Math. Gen.
, vol.35
, pp. 985-992
-
-
Calogero, F.1
-
5
-
-
0037123978
-
On modified versions of some solvable ODEs due to Chazy
-
Calogero, F. 2002. On modified versions of some solvable ODEs due to Chazy. J. Phys. A:Math. Gen., 35:4249–4256.
-
(2002)
J. Phys. A: Math. Gen.
, vol.35
, pp. 4249-4256
-
-
Calogero, F.1
-
6
-
-
0036439346
-
Solvable three-body problem and Painlevé conjectures
-
Erratum 134 (2003) 139
-
Calogero, F. 2002. Solvable three-body problem and Painlevé conjectures. Theor. Math. Phys., 133:1443–1452. Erratum 134 (2003) 139.
-
(2002)
Theor. Math. Phys.
, vol.133
, pp. 1443-1452
-
-
Calogero, F.1
-
7
-
-
0037177779
-
A complex deformation of the classical gravitational many-body problem that features a lot of completely periodic motions
-
Calogero, F. 2002. A complex deformation of the classical gravitational many-body problem that features a lot of completely periodic motions. J. Phys. A:Math. Gen., 35:3619–3627.
-
(2002)
J. Phys. A: Math. Gen.
, vol.35
, pp. 3619-3627
-
-
Calogero, F.1
-
8
-
-
2442643528
-
-
Mason L., Nutku Y., (eds), Cambridge University Press, Geometry and Integrability, London Mathematical Society Lecture Notes
-
Calogero, F. 2003. Differential equations featuring many periodic solutions”, Edited by:Mason, L, and Nutku, Y. Vol. 295, 9–21. Cambridge University Press. Geometry and Integrability, London Mathematical Society Lecture Notes
-
(2003)
Differential equations featuring many periodic solutions
, vol.295
, pp. 9-21
-
-
Calogero, F.1
-
9
-
-
85024525984
-
-
Shabat A.B., Gonzales-Lopez A., Marras M., Martinez Alonso L., Rodriguez M.A., (eds), NATO Science Series, II. Mathematics, Physics and Chemistry 132Proceedings of the NATO Advanced Study Institute held in Cadiz, Spain, June 2002 Kluwer,2003 49–77
-
Calogero, F. Partially superintegrable (indeed isochronous) systems are not rare, in New Trends in Integrability and Partial Solvability Edited by:Shabat, A. B., Gonzales-Lopez, A., Marras, M., Martinez Alonso, L., and Rodriguez, M. A., NATO Science Series, II. Mathematics, Physics and Chemistry 132Proceedings of the NATO Advanced Study Institute held in Cadiz, Spain, June 2002 Kluwer,2003 49–77
-
Partially superintegrable (indeed isochronous) systems are not rare, in New Trends in Integrability and Partial Solvability
-
-
Calogero, F.1
-
10
-
-
0242329751
-
General solution of a three-body problem in the plane
-
Calogero, F. 2003. General solution of a three-body problem in the plane. J. Phys. A:Math. Gen., 36:7291–7299.
-
(2003)
J. Phys. A: Math. Gen.
, vol.36
, pp. 7291-7299
-
-
Calogero, F.1
-
11
-
-
2442694263
-
Solution of the goldfish N-body problem in the plane with (only) nearest-neighbor coupling constants all equal to minus one half
-
Calogero, F. 2004. Solution of the goldfish N-body problem in the plane with (only) nearest-neighbor coupling constants all equal to minus one half. J. Nonlinear Math. Phys., 11:1–11.
-
(2004)
J. Nonlinear Math. Phys.
, vol.11
, pp. 1-11
-
-
Calogero, F.1
-
12
-
-
29144438750
-
Isochronous dynamical systems
-
(in press)
-
Calogero, F. 2004. Isochronous dynamical systems. Applicable Analysis, (in press).
-
(2004)
Applicable Analysis
-
-
Calogero, F.1
-
13
-
-
0343772979
-
Periodic solutions of a many-rotator problem in the plane
-
Calogero, F, and Françoise, J-P. 2001. Periodic solutions of a many-rotator problem in the plane. Inverse Problems, 17:1–8.
-
(2001)
Inverse Problems
, vol.17
, pp. 1-8
-
-
Calogero, F.1
Françoise, J.-P.2
-
14
-
-
0035994828
-
Periodic motions galore: How to modify nonlinear evolution equations so that they feature a lot of periodic solutions
-
Calogero, F, and Françoise, J-P. 2002. Periodic motions galore:how to modify nonlinear evolution equations so that they feature a lot of periodic solutions. J. Nonlinear Math. Phys., 9:99–125.
-
(2002)
J. Nonlinear Math. Phys.
, vol.9
, pp. 99-125
-
-
Calogero, F.1
Françoise, J.-P.2
-
15
-
-
2442644749
-
Nonlinear evolution ODEs featuring many periodic solutions
-
Calogero, F, and Françoise, J-P. 2003. Nonlinear evolution ODEs featuring many periodic solutions. Theor. Math. Phys., 137:1663–1675.
-
(2003)
Theor. Math. Phys.
, vol.137
, pp. 1663-1675
-
-
Calogero, F.1
Françoise, J.-P.2
-
16
-
-
85024586752
-
-
Isochronous motions galore: nonlinearly coupled oscillators with lots of isochronous solutions Proceedings of the Workshop on Superintegrability in Classical and Quantum Systems, Centre de Recherches Mathématiques (CRM), Université de Montréal, September 16–21, (2002), CRM Proceedings and Lecture Notes 37(2004) (in press)
-
Calogero F., Françoise J.-P., Isochronous motions galore:nonlinearly coupled oscillators with lots of isochronous solutions Proceedings of the Workshop on Superintegrability in Classical and Quantum Systems, Centre de Recherches Mathématiques (CRM), Université de Montréal, September 16–21, (2002), CRM Proceedings and Lecture Notes 37(2004) (in press).
-
-
-
Calogero, F.1
Françoise, J.-P.2
-
17
-
-
0038391419
-
A further solvable three-body problem in the plane
-
Calogero, F, Françoise, J-P, and Guillot, A. 2003. A further solvable three-body problem in the plane. J. Math. Phys., 10:157–214.
-
(2003)
J. Math. Phys.
, vol.10
, pp. 157-214
-
-
Calogero, F.1
Françoise, J.-P.2
Guillot, A.3
-
18
-
-
0038391419
-
Periodic solutions of a many-rotator problem in the plane. II. Analysis of various motions
-
Calogero, F, Françoise, J-P, and Sommacal, M. 2003. Periodic solutions of a many-rotator problem in the plane. II. Analysis of various motions. J. Nonlinear Math. Phys., 10:157–214.
-
(2003)
J. Nonlinear Math. Phys.
, vol.10
, pp. 157-214
-
-
Calogero, F.1
Françoise, J.-P.2
Sommacal, M.3
-
20
-
-
2442681166
-
A modified Schwarzian Korteweg de Vries equation in 2+1 dimensions with lots of periodic solutions
-
(in press)
-
Mariani, M, and Calogero, F. A modified Schwarzian Korteweg de Vries equation in 2+1 dimensions with lots of periodic solutions. Yadernaya Fizika, (in press).
-
Yadernaya Fizika
-
-
Mariani, M.1
Calogero, F.2
-
21
-
-
0036436207
-
Periodic solutions of a system of complex ODEs. II. Higher periods
-
Calogero, F, and Sommacal, M. 2002. Periodic solutions of a system of complex ODEs. II. Higher periods. J. Nonlinear Math. Phys., 9:1–33.
-
(2002)
J. Nonlinear Math. Phys.
, vol.9
, pp. 1-33
-
-
Calogero, F.1
Sommacal, M.2
-
24
-
-
85024566178
-
Resonant normal forms as constrained linear systems
-
Gaeta, G. Resonant normal forms as constrained linear systems. math-ph/0106017
-
Math-ph/0106017
-
-
Gaeta, G.1
-
26
-
-
85024593361
-
-
Identificazione e studio di sistemi dinamici ed equazioni di evoluzione nonlineari che posseggono molte soluzioni completamente periodiche (isocrone), Tesi di Laurea in Fisica (September 2003), Dipartimento di Fisica, Università di Roma “La Sapienza”, 2003
-
Mariani M, Identificazione e studio di sistemi dinamici ed equazioni di evoluzione nonlineari che posseggono molte soluzioni completamente periodiche (isocrone), Tesi di Laurea in Fisica (September 2003), Dipartimento di Fisica, Università di Roma “La Sapienza”, 2003.
-
-
-
Mariani, M.1
-
28
-
-
0000575684
-
On differential equations in normal forms
-
Walcher, S. 1991. On differential equations in normal forms. Math. Ann., 291:293–314.
-
(1991)
Math. Ann.
, vol.291
, pp. 293-314
-
-
Walcher, S.1
|