-
1
-
-
0033897520
-
Independent quantization: An index compression technique for high-dimensional data spaces
-
S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel, and J. Sander. Independent quantization: An index compression technique for high-dimensional data spaces. In ICDE, pages 577-588, 2000.
-
(2000)
ICDE
, pp. 577-588
-
-
Berchtold, S.1
Böhm, C.2
Jagadish, H.V.3
Kriegel, H.-P.4
Sander, J.5
-
2
-
-
0032094513
-
The pyramid-technique: Towards breaking the curse of dimensionality
-
S. Berchtold, C. Böhm, and H.-P. Kriegel. The pyramid-technique: Towards breaking the curse of dimensionality. In SIGMOD, pages 142-153, 1998.
-
(1998)
SIGMOD
, pp. 142-153
-
-
Berchtold, S.1
Böhm, C.2
Kriegel, H.-P.3
-
3
-
-
84947205653
-
When is nearest neighbors meaningful?
-
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbors meaningful? In ICDT, pages 217-235, 1999.
-
(1999)
ICDT
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
4
-
-
0038670812
-
Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases
-
C. Böhm, S. Berchtold, and D. Keim. Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Computing Surveys, pages 33(3):322-373, 2001.
-
(2001)
ACM Computing Surveys
, vol.33
, Issue.3
, pp. 322-373
-
-
Böhm, C.1
Berchtold, S.2
Keim, D.3
-
5
-
-
2442454378
-
Subquadratic algorithms for approximate clustering in high dimensional spaces
-
A. Borodin, R. Ostrofsky, and Y. Rabani. Subquadratic Algorithms for Approximate Clustering in High Dimensional Spaces. Proceedings of ACM STOC, 1999.
-
(1999)
Proceedings of ACM STOC
-
-
Borodin, A.1
Ostrofsky, R.2
Rabani, Y.3
-
6
-
-
0005287692
-
Local dimensionality reduction: A new approach to indexing high dimensional spaces
-
K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach to indexing high dimensional spaces. In VLDB, pages 89-100, 2000.
-
(2000)
VLDB
, pp. 89-100
-
-
Chakrabarti, K.1
Mehrotra, S.2
-
7
-
-
0036373391
-
Efficient k-NN search on vertically decomposed data
-
A.P. de Vries, N. Mamoulis, N. Nes, and M.L. Kersten. Efficient k-NN search on vertically decomposed data. In SIGMOD, pages 322-333, 2002.
-
(2002)
SIGMOD
, pp. 322-333
-
-
De Vries, A.P.1
Mamoulis, N.2
Nes, N.3
Kersten, M.L.4
-
8
-
-
0032091595
-
CURE: An efficient clustering algorithm for large databases
-
June
-
S. Guha, R. Rastogi, and K. Shim, CURE: An Efficient Clustering Algorithm for Large Databases. Proceedings of ACM SIGMOD, pages 73-84, June 1998.
-
(1998)
Proceedings of ACM SIGMOD
, pp. 73-84
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
9
-
-
0345359234
-
An adaptive and efficient dimensionality reduction algorithm for high-dimensional indexing
-
H. Jin, B.C. Ooi, H.T. Shen, C. Yu, and A. Zhou. An Adaptive and Efficient Dimensionality Reduction Algorithm for High-Dimensional Indexing. In ICDE, pages 87-98, 2003.
-
(2003)
ICDE
, pp. 87-98
-
-
Jin, H.1
Ooi, B.C.2
Shen, H.T.3
Yu, C.4
Zhou, A.5
-
10
-
-
0344775426
-
The A-tree: An index structure for high-dimensional spaces using relative approximation
-
Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-tree: An index structure for high-dimensional spaces using relative approximation. In VLDB, pages 516-526, 2000.
-
(2000)
VLDB
, pp. 516-526
-
-
Sakurai, Y.1
Yoshikawa, M.2
Uemura, S.3
Kojima, H.4
-
11
-
-
0012951952
-
A quantitative analysis and performance study for similarity search methods in high dimensional spaces
-
R. Weber, H. Schek, and S. Blott. A quantitative analysis and performance study for similarity search methods in high dimensional spaces. In VLDB, pages 194-205, 1998.
-
(1998)
VLDB
, pp. 194-205
-
-
Weber, R.1
Schek, H.2
Blott, S.3
-
12
-
-
84944319598
-
Indexing the distance: An efficient method to KNN processing
-
C. Yu, B.C. Ooi, K.L. Tan, and H. V. Jagadish. Indexing the distance: An efficient method to KNN processing. In VLDB, pages 166-174, 2001.
-
(2001)
VLDB
, pp. 166-174
-
-
Yu, C.1
Ooi, B.C.2
Tan, K.L.3
Jagadish, H.V.4
-
13
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
June
-
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases. Proceedings of ACM SIGMOD, Montreal Canada, pages 103-114, June 1996.
-
(1996)
Proceedings of ACM SIGMOD, Montreal Canada
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|