메뉴 건너뛰기




Volumn 16, Issue 6, 2004, Pages 1253-1282

Improving generalization capabilities of dynamic neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; COMPUTER SIMULATION;

EID: 2442550796     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976604773717603     Document Type: Article
Times cited : (10)

References (47)
  • 1
    • 0000177227 scopus 로고
    • The Vapnik-Chervonenkis dimension. Information versus complexity in learning
    • Abu-Mostafa, Y. S. (1989). The Vapnik-Chervonenkis dimension. Information versus complexity in learning. Neural Comp., 1, 312-317.
    • (1989) Neural Comp. , vol.1 , pp. 312-317
    • Abu-Mostafa, Y.S.1
  • 2
    • 0004733828 scopus 로고
    • Reducing error in neural network time series forecasting
    • Azoff, E. M. (1993). Reducing error in neural network time series forecasting. Neural Computation and Applications, 1, 140-247.
    • (1993) Neural Computation and Applications , vol.1 , pp. 140-247
    • Azoff, E.M.1
  • 3
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modelling and control of chemical process systems
    • Bhat, N. V., & McAvoy, T. J. (1990). Use of neural nets for dynamic modelling and control of chemical process systems. Computers and Chemical Engineering, 14, 573-583.
    • (1990) Computers and Chemical Engineering , vol.14 , pp. 573-583
    • Bhat, N.V.1    McAvoy, T.J.2
  • 4
    • 0026849117 scopus 로고
    • Determining model structure for neural models by network stripping
    • Bhat, N. V., & McAvoy, T. J. (1992). Determining model structure for neural models by network stripping. Computers and Chemical Engineering, 16, 271-281.
    • (1992) Computers and Chemical Engineering , vol.16 , pp. 271-281
    • Bhat, N.V.1    McAvoy, T.J.2
  • 5
    • 0028835062 scopus 로고
    • Radial basis function network configuration using genetic algorithms
    • Billings, S., & Zheng, G. L. (1995). Radial basis function network configuration using genetic algorithms. Neural Networks, 8, 877-890.
    • (1995) Neural Networks , vol.8 , pp. 877-890
    • Billings, S.1    Zheng, G.L.2
  • 6
    • 0000588294 scopus 로고
    • Improving the generalization properties of radial basis function neural networks
    • Bishop, Ch. (1991). Improving the generalization properties of radial basis function neural networks. Neural Comp., 3, 579-588.
    • (1991) Neural Comp. , vol.3 , pp. 579-588
    • Bishop, Ch.1
  • 7
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Bishop, Ch. (1995a). Training with noise is equivalent to Tikhonov regularization. Neural Comp., 7, 108-116.
    • (1995) Neural Comp. , vol.7 , pp. 108-116
    • Bishop, Ch.1
  • 9
    • 0031037681 scopus 로고    scopus 로고
    • Efficient training of recurrent neural network with time delays
    • Cohen, B., Saad, D. & Marom E. (1997). Efficient training of recurrent neural network with time delays. Neural Networks, 10, 51-59.
    • (1997) Neural Networks , vol.10 , pp. 51-59
    • Cohen, B.1    Saad, D.2    Marom, E.3
  • 10
    • 84956638261 scopus 로고    scopus 로고
    • A double gradient algorithm to optimize regularization
    • Berlin: Springer-Verlag
    • Czernichow, T. (1997). A double gradient algorithm to optimize regularization. In Proc. Artificial Neural Networks-ICANN'97, (pp. 289-294). Berlin: Springer-Verlag.
    • (1997) Proc. Artificial Neural Networks-ICANN'97 , pp. 289-294
    • Czernichow, T.1
  • 11
    • 0030241029 scopus 로고    scopus 로고
    • Sample complexity for learning recurrent perceptron mappings
    • DasGupta, B., & Sontag, E. D. (1996). Sample complexity for learning recurrent perceptron mappings. IEEE Trans. Information Theory, 42, 1479-1487.
    • (1996) IEEE Trans. Information Theory , vol.42 , pp. 1479-1487
    • DasGupta, B.1    Sontag, E.D.2
  • 12
    • 0031269563 scopus 로고    scopus 로고
    • Structure optimization of neural networks with the A*-algorithm
    • Doering, A., Galicki, M., & Witte, H. (1997). Structure optimization of neural networks with the A*-algorithm. IEEE Trans. Neural Networks, 8, 1434-1445.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 1434-1445
    • Doering, A.1    Galicki, M.2    Witte, H.3
  • 13
    • 0030241785 scopus 로고    scopus 로고
    • Dynamic structure of neural networks for stable adaptive control of nonlinear systems
    • Fabri, S., & Kadirkamanathan, V. (1996). Dynamic structure of neural networks for stable adaptive control of nonlinear systems. IEEE Trans. Neural Networks, 7, 1151-1166.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 1151-1166
    • Fabri, S.1    Kadirkamanathan, V.2
  • 14
    • 0001086881 scopus 로고
    • The recurrent cascade-correlation architecture
    • R. Lippman, J. Moody & D. Touretzky (Eds.). San Mateo, CA: Morgan Kaufmann
    • Fahlman, S. (1991). The recurrent cascade-correlation architecture, In R. Lippman, J. Moody & D. Touretzky (Eds.), Advances in neural information processing systems, 3 (pp. 190-196). San Mateo, CA: Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 190-196
    • Fahlman, S.1
  • 16
    • 0002764036 scopus 로고
    • On certian questions in the theory of optimal control
    • Filippov, A. E (1962). On certian questions in the theory of optimal control. SIAM J. Control, 1, 76-84.
    • (1962) SIAM J. Control , vol.1 , pp. 76-84
    • Filippov, A.E.1
  • 18
    • 0032028893 scopus 로고    scopus 로고
    • The planning of robotic optimal motions in the presence of obstacles
    • Galicki, M. (1998). The planning of robotic optimal motions in the presence of obstacles. Int. J. Robot. Res., 17, 248-259.
    • (1998) Int. J. Robot. Res. , vol.17 , pp. 248-259
    • Galicki, M.1
  • 19
    • 0032664889 scopus 로고    scopus 로고
    • Learning continuous trajectories in recurrent neural networks with time-dependent weights
    • Galicki, M., Leistritz, L., & Witte, H. (1999). Learning continuous trajectories in recurrent neural networks with time-dependent weights. IEEE Trans. Neural Networks, 10, 741-756.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 741-756
    • Galicki, M.1    Leistritz, L.2    Witte, H.3
  • 20
    • 0033712537 scopus 로고    scopus 로고
    • Improved learning of multiple continuous trajectories with initial network state
    • Los Alamitos, CA: IEEE Computer Society
    • Galicki, M., Leistritz, L., & Witte, H. (2000). Improved learning of multiple continuous trajectories with initial network state. In Proc. 2000 Int. Joint Conference on Neural Networks, IJCNN'2000 (pp 15-20) Los Alamitos, CA: IEEE Computer Society.
    • (2000) Proc. 2000 Int. Joint Conference on Neural Networks, IJCNN'2000 , pp. 15-20
    • Galicki, M.1    Leistritz, L.2    Witte, H.3
  • 21
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E., & Doursat, E. R. (1992). Neural networks and the bias/variance dilemma. Neural Comp., 4, 1-58.
    • (1992) Neural Comp. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, E.R.3
  • 22
    • 0029341578 scopus 로고
    • Constructive learning of recurrent neural networks. Limitations of recurrent cascade correlation and a simple solution
    • Giles, C. L., Chen, D., & Sun, G. Z. (1995). Constructive learning of recurrent neural networks. Limitations of recurrent cascade correlation and a simple solution. IEEE Trans. Neural Networks, 6, 829-836.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 829-836
    • Giles, C.L.1    Chen, D.2    Sun, G.Z.3
  • 23
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks architectures. Neural Comp., 7, 219-269.
    • (1995) Neural Comp. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 24
    • 84956690333 scopus 로고    scopus 로고
    • Generalization of Elman networks
    • Berlin: Springer-Verlag
    • Hammer, B. (1997). Generalization of Elman networks. In Proc. Artificial Neural Networks-ICANN'97, (pp. 409-414). Berlin: Springer-Verlag.
    • (1997) Proc. Artificial Neural Networks-ICANN'97 , pp. 409-414
    • Hammer, B.1
  • 25
    • 0001352974 scopus 로고
    • Pruning from adaptive regularization
    • Hansen, L. K., & Rasmussen, C. E. (1994). Pruning from adaptive regularization. Neural Comput., 6, 1223-1232.
    • (1994) Neural Comput. , vol.6 , pp. 1223-1232
    • Hansen, L.K.1    Rasmussen, C.E.2
  • 26
    • 84977125093 scopus 로고
    • Learning translation invariant recognition in massively parallel networks
    • J. W. de Bakker, A. J. Nijman, & P. C. Treleaven (Eds.). Berlin: Springer-Verlag
    • Hinton, G. E. (1987). Learning translation invariant recognition in massively parallel networks. In J. W. de Bakker, A. J. Nijman, & P. C. Treleaven (Eds.), Proc. PARLE Conf. Parallel Architectures and Languages Europe, (pp. 1-13). Berlin: Springer-Verlag.
    • (1987) Proc. PARLE Conf. Parallel Architectures and Languages Europe , pp. 1-13
    • Hinton, G.E.1
  • 27
    • 0029410715 scopus 로고
    • On the practical applicability of VC dimension bounds
    • Holden, S. B., & Niranjan, M. (1995). On the practical applicability of VC dimension bounds. Neural Comp., 7, 1265-1288.
    • (1995) Neural Comp. , vol.7 , pp. 1265-1288
    • Holden, S.B.1    Niranjan, M.2
  • 28
    • 0001713459 scopus 로고    scopus 로고
    • The dynamic universality of sigmoidal neural networks
    • Kiliom, J., & Siegelmann, H. T. (1996). The dynamic universality of sigmoidal neural networks. Information and Computation, 128, 48-56.
    • (1996) Information and Computation , vol.128 , pp. 48-56
    • Kiliom, J.1    Siegelmann, H.T.2
  • 29
    • 0345536717 scopus 로고    scopus 로고
    • Training continuous trajectories by means of dynamic neural networks with time dependent weights
    • Vienna, Austria
    • Leistritz, L., Galicki, M., & Witte, H. (1998). Training continuous trajectories by means of dynamic neural networks with time dependent weights. In Proc. Int. ICSC/IFAC Symp. Neural Networks, (pp. 591-596). Vienna, Austria.
    • (1998) Proc. Int. ICSC/IFAC Symp. Neural Networks , pp. 591-596
    • Leistritz, L.1    Galicki, M.2    Witte, H.3
  • 30
    • 0035507079 scopus 로고    scopus 로고
    • Two regularizers for recursive least squared algorithms in feedforward multilayered neural networks
    • Leung, C. S., Tsoi, A. C., & Chan, L. W. (2001). Two regularizers for recursive least squared algorithms in feedforward multilayered neural networks. IEEE Trans. Neural Networks, 12, 1314-1332.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 1314-1332
    • Leung, C.S.1    Tsoi, A.C.2    Chan, L.W.3
  • 31
    • 0031675929 scopus 로고    scopus 로고
    • Fast training of recurrent networks based on the EM algorithm
    • Ma, S., & Ji, C. (1998). Fast training of recurrent networks based on the EM algorithm. IEEE Trans. Neural Networks, 9, 11-26.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 11-26
    • Ma, S.1    Ji, C.2
  • 33
    • 0028544395 scopus 로고
    • Network information criterion-determining the number of hidden units for an artificial neural network model
    • Murata, N., Yoshizawa, S., & Amari, S. (1994). Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Networks, 5, 865-872.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 34
    • 0029375851 scopus 로고
    • Gradient calculation for dynamic recurrent neural networks: A survey
    • Pearlmutter, B. A. (1995). Gradient calculation for dynamic recurrent neural networks: A survey. IEEE Trans. Neural Networks, 6, 1212-1228.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 37
    • 0019245186 scopus 로고
    • On global convergence of an algorithm for optimal control
    • Sakawa, Y., & Shindo, Y. (1980). On global convergence of an algorithm for optimal control. IEEE Trans. Automatic Control, 25, 1149-1153.
    • (1980) IEEE Trans. Automatic Control , vol.25 , pp. 1149-1153
    • Sakawa, Y.1    Shindo, Y.2
  • 38
    • 0001440803 scopus 로고
    • Tangent Prop-A formalism for specifying selected invariances in an adaptive network
    • J. E. Moody, J. S.s Hanson, & R. P. Lippmann (Eds.). San Mateo, CA: Morgan Kaufmann
    • Simard, P., Victorri, B., Le Cun, Y., & Denker J. (1991). Tangent Prop-A formalism for specifying selected invariances in an adaptive network. In J. E. Moody, J. S.s Hanson, & R. P. Lippmann (Eds.), Advances in neural information processing systems 4 (pp. 895-903). San Mateo, CA: Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems , vol.4 , pp. 895-903
    • Simard, P.1    Victorri, B.2    Le Cun, Y.3    Denker, J.4
  • 40
    • 0342986115 scopus 로고
    • Application of maximum principle for numerical solution of optimal control problems with terminal state constraints
    • in Russian
    • Srochko, V. A. (1986). Application of maximum principle for numerical solution of optimal control problems with terminal state constraints. Kibernetika, 1, 73-77. (in Russian)
    • (1986) Kibernetika , vol.1 , pp. 73-77
    • Srochko, V.A.1
  • 41
    • 0342551761 scopus 로고
    • A comparison of constrained optimal control algorithms
    • V. Utkin & V. Jaaksoo (Eds.). Tallinn, Estonia: Technical University
    • Strend, S., & Balden, J. (1990). A comparison of constrained optimal control algorithms. In V. Utkin & V. Jaaksoo (Eds.), Prep. 11th IFAC World Congress, (pp. 192-198). Tallinn, Estonia: Technical University.
    • (1990) Prep. 11th IFAC World Congress , pp. 192-198
    • Strend, S.1    Balden, J.2
  • 42
    • 0032072476 scopus 로고    scopus 로고
    • Recurrent neural networks training by a learning automaton approach for trajectory learning and control system design
    • Sundareshan, M., & Condarcure, T. (1998). Recurrent neural networks training by a learning automaton approach for trajectory learning and control system design. IEEE Trans. Neural Networks, 9, 354-368.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 354-368
    • Sundareshan, M.1    Condarcure, T.2
  • 45
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability Applicat., 16, 264-280.
    • (1971) Theory of Probability Applicat. , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 47
    • 2342475914 scopus 로고    scopus 로고
    • A smoothing regularizer for feedforward and recurrent neural networks
    • Wu, L., & Moody, J. (1996). A smoothing regularizer for feedforward and recurrent neural networks. Neural Comput., 8, 461-489.
    • (1996) Neural Comput. , vol.8 , pp. 461-489
    • Wu, L.1    Moody, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.