-
1
-
-
0000177227
-
The Vapnik-Chervonenkis dimension. Information versus complexity in learning
-
Abu-Mostafa, Y. S. (1989). The Vapnik-Chervonenkis dimension. Information versus complexity in learning. Neural Comp., 1, 312-317.
-
(1989)
Neural Comp.
, vol.1
, pp. 312-317
-
-
Abu-Mostafa, Y.S.1
-
2
-
-
0004733828
-
Reducing error in neural network time series forecasting
-
Azoff, E. M. (1993). Reducing error in neural network time series forecasting. Neural Computation and Applications, 1, 140-247.
-
(1993)
Neural Computation and Applications
, vol.1
, pp. 140-247
-
-
Azoff, E.M.1
-
3
-
-
0025010309
-
Use of neural nets for dynamic modelling and control of chemical process systems
-
Bhat, N. V., & McAvoy, T. J. (1990). Use of neural nets for dynamic modelling and control of chemical process systems. Computers and Chemical Engineering, 14, 573-583.
-
(1990)
Computers and Chemical Engineering
, vol.14
, pp. 573-583
-
-
Bhat, N.V.1
McAvoy, T.J.2
-
4
-
-
0026849117
-
Determining model structure for neural models by network stripping
-
Bhat, N. V., & McAvoy, T. J. (1992). Determining model structure for neural models by network stripping. Computers and Chemical Engineering, 16, 271-281.
-
(1992)
Computers and Chemical Engineering
, vol.16
, pp. 271-281
-
-
Bhat, N.V.1
McAvoy, T.J.2
-
5
-
-
0028835062
-
Radial basis function network configuration using genetic algorithms
-
Billings, S., & Zheng, G. L. (1995). Radial basis function network configuration using genetic algorithms. Neural Networks, 8, 877-890.
-
(1995)
Neural Networks
, vol.8
, pp. 877-890
-
-
Billings, S.1
Zheng, G.L.2
-
6
-
-
0000588294
-
Improving the generalization properties of radial basis function neural networks
-
Bishop, Ch. (1991). Improving the generalization properties of radial basis function neural networks. Neural Comp., 3, 579-588.
-
(1991)
Neural Comp.
, vol.3
, pp. 579-588
-
-
Bishop, Ch.1
-
7
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
Bishop, Ch. (1995a). Training with noise is equivalent to Tikhonov regularization. Neural Comp., 7, 108-116.
-
(1995)
Neural Comp.
, vol.7
, pp. 108-116
-
-
Bishop, Ch.1
-
9
-
-
0031037681
-
Efficient training of recurrent neural network with time delays
-
Cohen, B., Saad, D. & Marom E. (1997). Efficient training of recurrent neural network with time delays. Neural Networks, 10, 51-59.
-
(1997)
Neural Networks
, vol.10
, pp. 51-59
-
-
Cohen, B.1
Saad, D.2
Marom, E.3
-
10
-
-
84956638261
-
A double gradient algorithm to optimize regularization
-
Berlin: Springer-Verlag
-
Czernichow, T. (1997). A double gradient algorithm to optimize regularization. In Proc. Artificial Neural Networks-ICANN'97, (pp. 289-294). Berlin: Springer-Verlag.
-
(1997)
Proc. Artificial Neural Networks-ICANN'97
, pp. 289-294
-
-
Czernichow, T.1
-
11
-
-
0030241029
-
Sample complexity for learning recurrent perceptron mappings
-
DasGupta, B., & Sontag, E. D. (1996). Sample complexity for learning recurrent perceptron mappings. IEEE Trans. Information Theory, 42, 1479-1487.
-
(1996)
IEEE Trans. Information Theory
, vol.42
, pp. 1479-1487
-
-
DasGupta, B.1
Sontag, E.D.2
-
12
-
-
0031269563
-
Structure optimization of neural networks with the A*-algorithm
-
Doering, A., Galicki, M., & Witte, H. (1997). Structure optimization of neural networks with the A*-algorithm. IEEE Trans. Neural Networks, 8, 1434-1445.
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, pp. 1434-1445
-
-
Doering, A.1
Galicki, M.2
Witte, H.3
-
13
-
-
0030241785
-
Dynamic structure of neural networks for stable adaptive control of nonlinear systems
-
Fabri, S., & Kadirkamanathan, V. (1996). Dynamic structure of neural networks for stable adaptive control of nonlinear systems. IEEE Trans. Neural Networks, 7, 1151-1166.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 1151-1166
-
-
Fabri, S.1
Kadirkamanathan, V.2
-
14
-
-
0001086881
-
The recurrent cascade-correlation architecture
-
R. Lippman, J. Moody & D. Touretzky (Eds.). San Mateo, CA: Morgan Kaufmann
-
Fahlman, S. (1991). The recurrent cascade-correlation architecture, In R. Lippman, J. Moody & D. Touretzky (Eds.), Advances in neural information processing systems, 3 (pp. 190-196). San Mateo, CA: Morgan Kaufmann.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 190-196
-
-
Fahlman, S.1
-
16
-
-
0002764036
-
On certian questions in the theory of optimal control
-
Filippov, A. E (1962). On certian questions in the theory of optimal control. SIAM J. Control, 1, 76-84.
-
(1962)
SIAM J. Control
, vol.1
, pp. 76-84
-
-
Filippov, A.E.1
-
18
-
-
0032028893
-
The planning of robotic optimal motions in the presence of obstacles
-
Galicki, M. (1998). The planning of robotic optimal motions in the presence of obstacles. Int. J. Robot. Res., 17, 248-259.
-
(1998)
Int. J. Robot. Res.
, vol.17
, pp. 248-259
-
-
Galicki, M.1
-
19
-
-
0032664889
-
Learning continuous trajectories in recurrent neural networks with time-dependent weights
-
Galicki, M., Leistritz, L., & Witte, H. (1999). Learning continuous trajectories in recurrent neural networks with time-dependent weights. IEEE Trans. Neural Networks, 10, 741-756.
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, pp. 741-756
-
-
Galicki, M.1
Leistritz, L.2
Witte, H.3
-
20
-
-
0033712537
-
Improved learning of multiple continuous trajectories with initial network state
-
Los Alamitos, CA: IEEE Computer Society
-
Galicki, M., Leistritz, L., & Witte, H. (2000). Improved learning of multiple continuous trajectories with initial network state. In Proc. 2000 Int. Joint Conference on Neural Networks, IJCNN'2000 (pp 15-20) Los Alamitos, CA: IEEE Computer Society.
-
(2000)
Proc. 2000 Int. Joint Conference on Neural Networks, IJCNN'2000
, pp. 15-20
-
-
Galicki, M.1
Leistritz, L.2
Witte, H.3
-
21
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman, S., Bienenstock, E., & Doursat, E. R. (1992). Neural networks and the bias/variance dilemma. Neural Comp., 4, 1-58.
-
(1992)
Neural Comp.
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, E.R.3
-
22
-
-
0029341578
-
Constructive learning of recurrent neural networks. Limitations of recurrent cascade correlation and a simple solution
-
Giles, C. L., Chen, D., & Sun, G. Z. (1995). Constructive learning of recurrent neural networks. Limitations of recurrent cascade correlation and a simple solution. IEEE Trans. Neural Networks, 6, 829-836.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 829-836
-
-
Giles, C.L.1
Chen, D.2
Sun, G.Z.3
-
23
-
-
0001219859
-
Regularization theory and neural networks architectures
-
Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks architectures. Neural Comp., 7, 219-269.
-
(1995)
Neural Comp.
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
24
-
-
84956690333
-
Generalization of Elman networks
-
Berlin: Springer-Verlag
-
Hammer, B. (1997). Generalization of Elman networks. In Proc. Artificial Neural Networks-ICANN'97, (pp. 409-414). Berlin: Springer-Verlag.
-
(1997)
Proc. Artificial Neural Networks-ICANN'97
, pp. 409-414
-
-
Hammer, B.1
-
25
-
-
0001352974
-
Pruning from adaptive regularization
-
Hansen, L. K., & Rasmussen, C. E. (1994). Pruning from adaptive regularization. Neural Comput., 6, 1223-1232.
-
(1994)
Neural Comput.
, vol.6
, pp. 1223-1232
-
-
Hansen, L.K.1
Rasmussen, C.E.2
-
26
-
-
84977125093
-
Learning translation invariant recognition in massively parallel networks
-
J. W. de Bakker, A. J. Nijman, & P. C. Treleaven (Eds.). Berlin: Springer-Verlag
-
Hinton, G. E. (1987). Learning translation invariant recognition in massively parallel networks. In J. W. de Bakker, A. J. Nijman, & P. C. Treleaven (Eds.), Proc. PARLE Conf. Parallel Architectures and Languages Europe, (pp. 1-13). Berlin: Springer-Verlag.
-
(1987)
Proc. PARLE Conf. Parallel Architectures and Languages Europe
, pp. 1-13
-
-
Hinton, G.E.1
-
27
-
-
0029410715
-
On the practical applicability of VC dimension bounds
-
Holden, S. B., & Niranjan, M. (1995). On the practical applicability of VC dimension bounds. Neural Comp., 7, 1265-1288.
-
(1995)
Neural Comp.
, vol.7
, pp. 1265-1288
-
-
Holden, S.B.1
Niranjan, M.2
-
28
-
-
0001713459
-
The dynamic universality of sigmoidal neural networks
-
Kiliom, J., & Siegelmann, H. T. (1996). The dynamic universality of sigmoidal neural networks. Information and Computation, 128, 48-56.
-
(1996)
Information and Computation
, vol.128
, pp. 48-56
-
-
Kiliom, J.1
Siegelmann, H.T.2
-
29
-
-
0345536717
-
Training continuous trajectories by means of dynamic neural networks with time dependent weights
-
Vienna, Austria
-
Leistritz, L., Galicki, M., & Witte, H. (1998). Training continuous trajectories by means of dynamic neural networks with time dependent weights. In Proc. Int. ICSC/IFAC Symp. Neural Networks, (pp. 591-596). Vienna, Austria.
-
(1998)
Proc. Int. ICSC/IFAC Symp. Neural Networks
, pp. 591-596
-
-
Leistritz, L.1
Galicki, M.2
Witte, H.3
-
30
-
-
0035507079
-
Two regularizers for recursive least squared algorithms in feedforward multilayered neural networks
-
Leung, C. S., Tsoi, A. C., & Chan, L. W. (2001). Two regularizers for recursive least squared algorithms in feedforward multilayered neural networks. IEEE Trans. Neural Networks, 12, 1314-1332.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, pp. 1314-1332
-
-
Leung, C.S.1
Tsoi, A.C.2
Chan, L.W.3
-
31
-
-
0031675929
-
Fast training of recurrent networks based on the EM algorithm
-
Ma, S., & Ji, C. (1998). Fast training of recurrent networks based on the EM algorithm. IEEE Trans. Neural Networks, 9, 11-26.
-
(1998)
IEEE Trans. Neural Networks
, vol.9
, pp. 11-26
-
-
Ma, S.1
Ji, C.2
-
33
-
-
0028544395
-
Network information criterion-determining the number of hidden units for an artificial neural network model
-
Murata, N., Yoshizawa, S., & Amari, S. (1994). Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Networks, 5, 865-872.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
34
-
-
0029375851
-
Gradient calculation for dynamic recurrent neural networks: A survey
-
Pearlmutter, B. A. (1995). Gradient calculation for dynamic recurrent neural networks: A survey. IEEE Trans. Neural Networks, 6, 1212-1228.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 1212-1228
-
-
Pearlmutter, B.A.1
-
35
-
-
0003716451
-
-
Moscow: Nauka. (in Russian)
-
Pontryagin, L. C., Boltyansky, V. C., Gamkrelidze, R. V., & Mischenko, E. F. (1961). Mathematical theory of optimal problem. Moscow: Nauka. (in Russian)
-
(1961)
Mathematical Theory of Optimal Problem
-
-
Pontryagin, L.C.1
Boltyansky, V.C.2
Gamkrelidze, R.V.3
Mischenko, E.F.4
-
37
-
-
0019245186
-
On global convergence of an algorithm for optimal control
-
Sakawa, Y., & Shindo, Y. (1980). On global convergence of an algorithm for optimal control. IEEE Trans. Automatic Control, 25, 1149-1153.
-
(1980)
IEEE Trans. Automatic Control
, vol.25
, pp. 1149-1153
-
-
Sakawa, Y.1
Shindo, Y.2
-
38
-
-
0001440803
-
Tangent Prop-A formalism for specifying selected invariances in an adaptive network
-
J. E. Moody, J. S.s Hanson, & R. P. Lippmann (Eds.). San Mateo, CA: Morgan Kaufmann
-
Simard, P., Victorri, B., Le Cun, Y., & Denker J. (1991). Tangent Prop-A formalism for specifying selected invariances in an adaptive network. In J. E. Moody, J. S.s Hanson, & R. P. Lippmann (Eds.), Advances in neural information processing systems 4 (pp. 895-903). San Mateo, CA: Morgan Kaufmann.
-
(1991)
Advances in Neural Information Processing Systems
, vol.4
, pp. 895-903
-
-
Simard, P.1
Victorri, B.2
Le Cun, Y.3
Denker, J.4
-
39
-
-
0032044157
-
Information theoretic subset selection for neural network models
-
Sridhar, D. V., Bartlett E. B., & Seagrave, R. C. (1998). Information theoretic subset selection for neural network models. Computers and Chemical Engineering, 22, 613-626.
-
(1998)
Computers and Chemical Engineering
, vol.22
, pp. 613-626
-
-
Sridhar, D.V.1
Bartlett, E.B.2
Seagrave, R.C.3
-
40
-
-
0342986115
-
Application of maximum principle for numerical solution of optimal control problems with terminal state constraints
-
in Russian
-
Srochko, V. A. (1986). Application of maximum principle for numerical solution of optimal control problems with terminal state constraints. Kibernetika, 1, 73-77. (in Russian)
-
(1986)
Kibernetika
, vol.1
, pp. 73-77
-
-
Srochko, V.A.1
-
41
-
-
0342551761
-
A comparison of constrained optimal control algorithms
-
V. Utkin & V. Jaaksoo (Eds.). Tallinn, Estonia: Technical University
-
Strend, S., & Balden, J. (1990). A comparison of constrained optimal control algorithms. In V. Utkin & V. Jaaksoo (Eds.), Prep. 11th IFAC World Congress, (pp. 192-198). Tallinn, Estonia: Technical University.
-
(1990)
Prep. 11th IFAC World Congress
, pp. 192-198
-
-
Strend, S.1
Balden, J.2
-
42
-
-
0032072476
-
Recurrent neural networks training by a learning automaton approach for trajectory learning and control system design
-
Sundareshan, M., & Condarcure, T. (1998). Recurrent neural networks training by a learning automaton approach for trajectory learning and control system design. IEEE Trans. Neural Networks, 9, 354-368.
-
(1998)
IEEE Trans. Neural Networks
, vol.9
, pp. 354-368
-
-
Sundareshan, M.1
Condarcure, T.2
-
45
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability Applicat., 16, 264-280.
-
(1971)
Theory of Probability Applicat.
, vol.16
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
47
-
-
2342475914
-
A smoothing regularizer for feedforward and recurrent neural networks
-
Wu, L., & Moody, J. (1996). A smoothing regularizer for feedforward and recurrent neural networks. Neural Comput., 8, 461-489.
-
(1996)
Neural Comput.
, vol.8
, pp. 461-489
-
-
Wu, L.1
Moody, J.2
|