-
1
-
-
44349162071
-
Improved SCF convergence acceleration
-
Pulay, P. (1982) "Improved SCF convergence acceleration", J. Comput. Chem. 3, 556.
-
(1982)
J. Comput. Chem.
, vol.3
, pp. 556
-
-
Pulay, P.1
-
3
-
-
0033690777
-
Can we outperform the DIIS approach for electronic structure calculations?
-
Cancès, E. and Le Bris, C. (2000) "Can we outperform the DIIS approach for electronic structure calculations?", Int. J. Quantum Chem. 79, 82.
-
(2000)
Int. J. Quantum Chem.
, vol.79
, pp. 82
-
-
Cancès, E.1
Le Bris, C.2
-
4
-
-
33749419794
-
General methods for geometry and wave function optimization
-
Fischer, T.H. and Almlöf, J. (1992) "General methods for geometry and wave function optimization", J. Chem. Phys. 96, 9768.
-
(1992)
J. Chem. Phys.
, vol.96
, pp. 9768
-
-
Fischer, T.H.1
Almlöf, J.2
-
5
-
-
0031285817
-
Approximate second order method for orbital optimization of SCF and MSCF wavefunctions
-
Chaban, G., Schmidt, M.W. and Gordon, M.S. (1997) "Approximate second order method for orbital optimization of SCF and MSCF wavefunctions", Theor. Chem. Acc. 97, 88.
-
(1997)
Theor. Chem. Acc.
, vol.97
, pp. 88
-
-
Chaban, G.1
Schmidt, M.W.2
Gordon, M.S.3
-
6
-
-
84987063960
-
A 'level shifting' method for converging closed shell Hartree-Fock wave functions
-
Saunders, V.R. and Hillier, I.H. (1973) "A 'level shifting' method for converging closed shell Hartree-Fock wave functions", Int. J. Quantum Chem. 7, 699.
-
(1973)
Int. J. Quantum Chem.
, vol.7
, pp. 699
-
-
Saunders, V.R.1
Hillier, I.H.2
-
7
-
-
0004161838
-
-
Cambridge University Press, New york, NY
-
Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in C. The Art of Scientific Computing, Second Edition (Cambridge University Press, New york, NY).
-
(1992)
Numerical Recipes in C. The Art of Scientific Computing, Second Edition
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
8
-
-
36849104259
-
Quadratically convergent iteration procedure for self-consistent calculations
-
Brown, T.H. (1968) "Quadratically convergent iteration procedure for self-consistent calculations", J. Chem. Phys. 49, 2291.
-
(1968)
J. Chem. Phys.
, vol.49
, pp. 2291
-
-
Brown, T.H.1
-
9
-
-
84968510937
-
A class of methods for solving nonlinear simultaneous equations
-
Broyden, C.G. (1965) "A class of methods for solving nonlinear simultaneous equations", Math. Computation 19, 577.
-
(1965)
Math. Computation
, vol.19
, pp. 577
-
-
Broyden, C.G.1
-
10
-
-
25544466524
-
Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method
-
Vanderbilt, D. and Louie, S.G. (1984) "Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method", Phys. Rev. B 30, 6118.
-
(1984)
Phys. Rev. B
, vol.30
, pp. 6118
-
-
Vanderbilt, D.1
Louie, S.G.2
-
11
-
-
0000730460
-
Self-consistent order-N density-functional calculations for very large systems
-
Ordejon, P., Artacho, E. and Soler, J.M. (1996) "Self-consistent order-N density-functional calculations for very large systems", Phys. Rev. B 53, 10441.
-
(1996)
Phys. Rev. B
, vol.53
, pp. 10441
-
-
Ordejon, P.1
Artacho, E.2
Soler, J.M.3
-
12
-
-
0001336950
-
Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling
-
Mauri, F. and Galli, G. (1994) "Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling", Phys. Rev. B 50, 4316.
-
(1994)
Phys. Rev. B
, vol.50
, pp. 4316
-
-
Mauri, F.1
Galli, G.2
-
13
-
-
33746368960
-
-
Unpublished
-
Areshkin, D.A., Shenderova, O.A., Schall, J.D. and Brenner, D.W. (Unpublished) "Self-consistent tight binding adapted for large metallic hydro-carbon systems. Application to field emission from nano-diamond clusters".
-
Self-consistent Tight Binding Adapted for Large Metallic Hydro-carbon Systems. Application to Field Emission from Nano-diamond Clusters
-
-
Areshkin, D.A.1
Shenderova, O.A.2
Schall, J.D.3
Brenner, D.W.4
-
14
-
-
0042463699
-
Atomic modeling of carbon-based nano-structures as a tool for developing new materials and technologies
-
Brenner, D.W., Shenderova, O.A., Areshkin, D.A. and Schall, J.D. (2002) "Atomic modeling of carbon-based nano-structures as a tool for developing new materials and technologies", Computer Modeling Engng. Sci. 3, 643.
-
(2002)
Computer Modeling Engng. Sci.
, vol.3
, pp. 643
-
-
Brenner, D.W.1
Shenderova, O.A.2
Areshkin, D.A.3
Schall, J.D.4
-
15
-
-
0036041481
-
Mechanical and electrical properties of nanotubes
-
Bernholc, J., Brenner, D., Nardelli, M., Buongiorno Meunier, V. and Roland, C. (2002) "Mechanical and electrical properties of nanotubes", Ann. Rev. Mat. Res. 32, 3476.
-
(2002)
Ann. Rev. Mat. Res.
, vol.32
, pp. 3476
-
-
Bernholc, J.1
Brenner, D.2
Nardelli, M.3
Buongiorno Meunier, V.4
Roland, C.5
-
16
-
-
0000226949
-
Environment-dependent tight-binding potential model
-
Tang, M.S., Wang, C.Z., Chan, C.T. and Ho, K.M. (1996) "Environment-dependent tight-binding potential model", Phys. Rev. B 53, 979.
-
(1996)
Phys. Rev. B
, vol.53
, pp. 979
-
-
Tang, M.S.1
Wang, C.Z.2
Chan, C.T.3
Ho, K.M.4
-
17
-
-
4243716635
-
Environment-dependent tight-binding potential model
-
Tang, M.S., Wang, C.Z., Chan, C.T. and Ho, K.M. (1996) "Environment-dependent tight-binding potential model", Phys. Rev. B 54, 10982.
-
(1996)
Phys. Rev. B
, vol.54
, pp. 10982
-
-
Tang, M.S.1
Wang, C.Z.2
Chan, C.T.3
Ho, K.M.4
-
18
-
-
0000780089
-
Simplified method for calculating the energy of weekly interacting fragments
-
Harris, J. (1985) "Simplified method for calculating the energy of weekly interacting fragments", Phys. Rev. B 31, 1770.
-
(1985)
Phys. Rev. B
, vol.31
, pp. 1770
-
-
Harris, J.1
-
19
-
-
0033746775
-
Electronic properties of diamond surfaces - Blessing or curse for devices?
-
Ristein, J. (2000) "Electronic properties of diamond surfaces - blessing or curse for devices?", Diamond Relat. Mater. 9, 1129.
-
(2000)
Diamond Relat. Mater.
, vol.9
, pp. 1129
-
-
Ristein, J.1
-
20
-
-
0000506844
-
Fullerene nanotubes in electric fields
-
Lou, L., Nordlander, P. and Smalley, R.E. (1995) "Fullerene nanotubes in electric fields", Phys. Rev. B 52, 1429.
-
(1995)
Phys. Rev. B
, vol.52
, pp. 1429
-
-
Lou, L.1
Nordlander, P.2
Smalley, R.E.3
-
21
-
-
0035135946
-
Electron transport through single molecules: Scattering treatment using density functional and Green function theories
-
Derosa, P.A. and Seminario, J.M. (2000) "Electron transport through single molecules: scattering treatment using density functional and Green function theories", J. Chem. Phys. 105, 471.
-
(2000)
J. Chem. Phys.
, vol.105
, pp. 471
-
-
Derosa, P.A.1
Seminario, J.M.2
-
22
-
-
0034339576
-
Large-scale applications of real-space multigrid methods to surfaces, nanotubes, and quantum transport
-
Bernholc, J., et al. (2000) "Large-scale applications of real-space multigrid methods to surfaces, nanotubes, and quantum transport", Phys. Status Solidi B 217, 685.
-
(2000)
Phys. Status Solidi B
, vol.217
, pp. 685
-
-
Bernholc, J.1
-
23
-
-
0000881956
-
Dynamic conductance of carbon nanotubes
-
Roland, C., Nardelli, M.B., Wang, J. and Guo, H. (2000) "Dynamic conductance of carbon nanotubes", Phys. Rev. Lett. 84, 2921.
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2921
-
-
Roland, C.1
Nardelli, M.B.2
Wang, J.3
Guo, H.4
-
24
-
-
0034291813
-
Nanoscale device modeling: The Green's function method
-
Datta, S. (2000) "Nanoscale device modeling: the Green's function method", Superlattices Microstruct. 28, 253.
-
(2000)
Superlattices Microstruct.
, vol.28
, pp. 253
-
-
Datta, S.1
|