메뉴 건너뛰기




Volumn 22, Issue 4, 2004, Pages 757-766

Configuring radial basis function network using fractal scaling process with application to chaotic time series prediction

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; FRACTALS; LEAST SQUARES APPROXIMATIONS; MATHEMATICAL MODELS; RADIAL BASIS FUNCTION NETWORKS;

EID: 2442505027     PISSN: 09600779     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chaos.2004.03.008     Document Type: Article
Times cited : (18)

References (17)
  • 1
    • 0029341551 scopus 로고
    • Radial basis function and related models: An overview
    • Acosta F.M.A. Radial basis function and related models: an overview. Signal Proc. 45:1995;37-58.
    • (1995) Signal Proc. , vol.45 , pp. 37-58
    • Acosta, F.M.A.1
  • 2
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function
    • Park J., Sandberg I.W. Universal approximation using radial-basis- function. Neural Comput. 3:1991;247-257.
    • (1991) Neural Comput. , vol.3 , pp. 247-257
    • Park, J.1    Sandberg, I.W.2
  • 3
    • 0001002401 scopus 로고
    • Approximation and radial-basis-function networks
    • Park J., Sandberg I.W. Approximation and radial-basis-function networks. Neural Comput. 5:1993;305-316.
    • (1993) Neural Comput. , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 4
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks. 2:1991;302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 5
    • 0025839504 scopus 로고
    • A Gaussian potential function network with hierarchically self-organizing learning
    • Lee S., Kil R.M. A Gaussian potential function network with hierarchically self-organizing learning. Neural Networks. 4:1991;207-224.
    • (1991) Neural Networks , vol.4 , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 7
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • Platt J. A resource-allocating network for function interpolation. Neural Comput. 3:1991;213-225.
    • (1991) Neural Comput. , vol.3 , pp. 213-225
    • Platt, J.1
  • 8
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural network
    • Kadirkamanathan V., Niranjan M. A function estimation approach to sequential learning with neural network. Neural Comput. 5:1993;954-975.
    • (1993) Neural Comput. , vol.5 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 9
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm
    • Yingwei L., Sundararajan N., Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Trans. Neural Networks. 9:1998;308-318.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 308-318
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 10
    • 0031276993 scopus 로고    scopus 로고
    • A neural-network learning theory and a polynomial time RBF algorithm
    • Roy A., Govil S., Miranda R. A neural-network learning theory and a polynomial time RBF algorithm. IEEE Trans. Neural Networks. 8:1997;1301-1313.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 1301-1313
    • Roy, A.1    Govil, S.2    Miranda, R.3
  • 11
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • Casdagli M. Nonlinear prediction of chaotic time series. Phys. D. 35:1989;335-356.
    • (1989) Phys. D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 14
    • 0003645482 scopus 로고
    • Nonlinear signal processing using neural networks: Prediction and system modeling
    • Lapedes A, Farber R. Nonlinear signal processing using neural networks: prediction and system modeling. Los Alamos Nat. Lab Tech. Rep. LA-UR-87-2262, 1987.
    • (1987) Los Alamos Nat. Lab Tech. Rep. , vol.LA-UR-87-2262
    • Lapedes, A.1    Farber, R.2
  • 15
    • 0028312789 scopus 로고
    • Evolving recurrent perceptrons for time-series modeling
    • McDonnell J.R., Waagen D. Evolving recurrent perceptrons for time-series modeling. IEEE Trans. Neural Networks. 5:1994;24-38.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 24-38
    • McDonnell, J.R.1    Waagen, D.2
  • 16
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J., Darken C.J. Fast learning in networks of locally-tuned processing units. Neural Comput. 1(2):1989;281-294.
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 17
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • D.A. Rand, & L.S. Young. New York: Springer-Verlag
    • Takens F. Detecting strange attractors in turbulence. Rand D.A., Young L.S. Dynamical systems and turbulence. 1980;Springer-Verlag, New York.
    • (1980) Dynamical Systems and Turbulence
    • Takens, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.