-
2
-
-
2442443416
-
Stratified coherent spaces: A denotational semantics for light linear logic
-
submitted, available from Informatics Division Report Series, University of Edinburgh, August
-
P. Baillot, Stratified coherent spaces: a denotational semantics for light linear logic, Tech. Report EDI-INF-RR-0025 submitted, available from Informatics Division Report Series, University of Edinburgh, August 2000, http://www.informatics.ed.ac.uk/publications/report/0025.html.
-
(2000)
Tech. Report
, vol.EDI-INF-RR-0025
-
-
Baillot, P.1
-
6
-
-
0026879987
-
Characterizing complexity classes by higher-type primitive recursive definitions
-
Goerdt A. Characterizing complexity classes by higher-type primitive recursive definitions. Theoret. Comput. Sci. 100:1992;45-66.
-
(1992)
Theoret. Comput. Sci.
, vol.100
, pp. 45-66
-
-
Goerdt, A.1
-
7
-
-
0038147468
-
Linear types and non-size-increasing polynomial time computation
-
Hofmann M. Linear types and non-size-increasing polynomial time computation. Inform. Comput. 183:1999;57-85.
-
(1999)
Inform. Comput.
, vol.183
, pp. 57-85
-
-
Hofmann, M.1
-
8
-
-
0003942281
-
Type systems for polynomial-time computation
-
Darmstadt University of Technology, Habilitationsschrift, appears as Department of Computer Science, University of Edinburgh
-
M. Hofmann, Type systems for polynomial-time computation, Darmstadt University of Technology, Habilitationsschrift, 1999, appears as Tech. Report ECS-LFCS-99-406, Department of Computer Science, University of Edinburgh, A revised and abridged version has appeared as "Safe recursion with higher types and BCK algebra" in Ann. Pure Appl. Logic 104 (2000) 113-166.
-
(1999)
Tech. Report ECS-LFCS-99-406
-
-
Hofmann, M.1
-
9
-
-
0000201517
-
Safe recursion with higher types and BCK algebra
-
A revised and abridged version has appeared as
-
M. Hofmann, Type systems for polynomial-time computation, Darmstadt University of Technology, Habilitationsschrift, 1999, appears as Tech. Report ECS-LFCS-99-406, Department of Computer Science, University of Edinburgh, A revised and abridged version has appeared as "Safe recursion with higher types and BCK algebra" in Ann. Pure Appl. Logic 104 (2000) 113-166.
-
(2000)
Ann. Pure Appl. Logic
, vol.104
, pp. 113-166
-
-
-
10
-
-
4243054234
-
Programming languages capturing complexity classes
-
M. Hofmann, Programming Languages capturing complexity classes, SIGACT News (Logic Column 9), ftp.research.bell-labs.com/dist/riecke/hofmann.ps.gz.
-
SIGACT News (Logic Column 9)
-
-
Hofmann, M.1
-
11
-
-
0000429274
-
A small complete category
-
Hyland M. A small complete category. Ann. Pure Appl. Logic. 40:1988;135-165.
-
(1988)
Ann. Pure Appl. Logic
, vol.40
, pp. 135-165
-
-
Hyland, M.1
-
12
-
-
0037452393
-
Phase semantics for light linear logic
-
M. Kanovich, M. Okada, A. Scedrov, Phase semantics for light linear logic, Theoret. Comput. Sci. 294 (2003) 525-549 (extended abstract in ENTCS, Vol. 6, 1997).
-
(2003)
Theoret. Comput. Sci.
, vol.294
, pp. 525-549
-
-
Kanovich, M.1
Okada, M.2
Scedrov, A.3
-
13
-
-
0037452393
-
-
extended abstract in
-
M. Kanovich, M. Okada, A. Scedrov, Phase semantics for light linear logic, Theoret. Comput. Sci. 294 (2003) 525-549 (extended abstract in ENTCS, Vol. 6, 1997).
-
(1997)
ENTCS
, vol.6
-
-
-
15
-
-
0000926057
-
Lambda calculus characterisations of polytime
-
Leivant D., Marion J.-Y. Lambda calculus characterisations of polytime. Fund. Inform. 19:1993;167-184.
-
(1993)
Fund. Inform.
, vol.19
, pp. 167-184
-
-
Leivant, D.1
Marion, J.-Y.2
-
17
-
-
85031934615
-
Polymorphism is set-theoretic, constructively
-
D.H. Pitt. Category Theory and Computer Science. Berlin: Springer
-
Pitts A. Polymorphism is set-theoretic, constructively. Pitt D.H. Category Theory and Computer Science. Lecture Notes in Computer Science. Vol. 283:1987;12-39 Springer, Berlin.
-
(1987)
Lecture Notes in Computer Science
, vol.283
, pp. 12-39
-
-
Pitts, A.1
-
18
-
-
0001500180
-
Linear logic, * -autonomous categories, and cofree coalgebras
-
J. Gray, A. Scedrov, (Eds.), American Mathematical Society, Providence, RI, 1989.
-
R. Seely, Linear logic, * -autonomous categories, and cofree coalgebras, in: J. Gray, A. Scedrov, (Eds.), Categories in Computer Science and Logic, Contemporary Mathematics, Vol. 92, American Mathematical Society, Providence, RI, 1989.
-
(1989)
Categories in Computer Science and Logic, Contemporary Mathematics
, vol.92
-
-
Seely, R.1
|