-
1
-
-
0016557674
-
Multidimensional binary search trees used for associative searching
-
Bentley, J. L. (1975). Multidimensional Binary Search Trees Used for Associative Searching. Communications of the ACM 18(9), pp. 509-517.
-
(1975)
Communications of the ACM
, vol.18
, Issue.9
, pp. 509-517
-
-
Bentley, J.L.1
-
3
-
-
26944461753
-
Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data
-
Ertoz, L., Steinbach, M., and Kumar, V. (2003), Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data, Proc. of SIAM DM03.
-
(2003)
Proc. of SIAM DM03
-
-
Ertoz, L.1
Steinbach, M.2
Kumar, V.3
-
4
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
AAAI Press
-
Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD-96), AAAI Press, pp. 226-231.
-
(1996)
Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD-96)
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Xu, X.4
-
5
-
-
4143100697
-
AUTOCLUST: Automatic clustering via boundary extraction for mining massive point-data sets
-
Geo Computation CD-ROM: GC049, ISBN 0-9533477-2-9
-
th Int'l Conf. on Geocomputation, Geo Computation CD-ROM: GC049, ISBN 0-9533477-2-9.
-
(2000)
th Int'l Conf. on Geocomputation
-
-
Estivill-Castro, V.1
Lee, I.2
-
6
-
-
0032091595
-
CURE: An efficient clustering algorithm for large databases
-
Guha, S., Rastogi, R., and Shim, K. (1998). CURE: An efficient clustering algorithm for large databases, Proc. 1998 ACM SIGMOD Int. Conf. Management of Data, pp. 73-84.
-
(1998)
Proc. 1998 ACM SIGMOD Int. Conf. Management of Data
, pp. 73-84
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
7
-
-
0032652570
-
ROCK: A robust clustering algorithm for categorical attributes
-
Guha, S., Rastogi, R., and Shim, K. (1999). ROCK: a robust clustering algorithm for categorical attributes. Proc. 1999 Int. Conf. on Data Eng., pp. 512-521.
-
(1999)
Proc. 1999 Int. Conf. on Data Eng.
, pp. 512-521
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
9
-
-
0010415411
-
Spatial clustering methods in data mining: A survey
-
H. Miller and J. Han (eds.), Taylor and Francis
-
Han, J., Kamber, M., and Tung, A. K. H. (2001). Spatial clustering methods in data mining: A survey, H. Miller and J. Han (eds.), Geographic Data Mining and Knowledge Discovery, Taylor and Francis.
-
(2001)
Geographic Data Mining and Knowledge Discovery
-
-
Han, J.1
Kamber, M.2
Tung, A.K.H.3
-
11
-
-
0032686723
-
CHAMELEON, A hierarchical clustering algorithm using dynamic modeling
-
Karypis, G., Han, E., and Kumar, V. (1999). CHAMELEON, A hierarchical clustering algorithm using dynamic modeling, IEEE Computer, Vol.32, pp. 68-75.
-
(1999)
IEEE Computer
, vol.32
, pp. 68-75
-
-
Karypis, G.1
Han, E.2
Kumar, V.3
-
12
-
-
0013294258
-
Mining knowledge in geographical data
-
Koperski, K., Han, J., and Adhikari, J. (1998). Mining Knowledge in Geographical Data. Communications of the ACM, 26(1), pp. 65-74.
-
(1998)
Communications of the ACM
, vol.26
, Issue.1
, pp. 65-74
-
-
Koperski, K.1
Han, J.2
Adhikari, J.3
-
13
-
-
0034592784
-
Efficient clustering of high-dimensional data sets with application to reference matching
-
ACM Press
-
McCallum, A. Nigam, K., and Ungar, L. (2000). Efficient clustering of high-dimensional data sets with application to reference matching. Proc. of KDD2000, ACM Press, pp. 169-178.
-
(2000)
Proc. of KDD2000
, pp. 169-178
-
-
McCallum, A.1
Nigam, K.2
Ungar, L.3
-
15
-
-
84899029127
-
Very fast EM-based mixture model clustering using multiresolution kd-trees
-
(1999), Morgan Kaufman
-
Moore, A. (1999). Very fast EM-based mixture model clustering using multiresolution kd-trees. Advances in Neural Information Processing Systems, Vol 11 (1999), Morgan Kaufman, pp. 543-549.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 543-549
-
-
Moore, A.1
-
17
-
-
0004616914
-
Closest-point problems in computational geometry
-
J. R. Sack and J. Urrutia, editors, Elsevier Science Publishing
-
Smid, M. (1997). Closest-Point Problems in Computational Geometry. Handbook on Computational Geometry. J. R. Sack and J. Urrutia, editors, Elsevier Science Publishing, pp. 877-935.
-
(1997)
Handbook on Computational Geometry
, pp. 877-935
-
-
Smid, M.1
-
18
-
-
0000662711
-
An O(nlogn) algorithm for the allnearest-neighbors problem
-
1989
-
Vaidya, P. M., (1989). An O(nlogn) algorithm for the allnearest-neighbors problem. Discrete & Computational Geometry 4 (1989), pp. 101-115.
-
(1989)
Discrete & Computational Geometry
, vol.4
, pp. 101-115
-
-
Vaidya, P.M.1
-
19
-
-
84994158589
-
STING: A statistical information grid approach to spatial data mining
-
Morgan Kaufmann
-
Wang, W., Yang, J., and Muntz, R. (1997). STING: A Statistical Information Grid Approach to Spatial Data Mining, Proc. of the 23rd Int. Conf. on Very Large Data Bases, Morgan Kaufmann, pp. 186-195.
-
(1997)
Proc. of the 23rd Int. Conf. on Very Large Data Bases
, pp. 186-195
-
-
Wang, W.1
Yang, J.2
Muntz, R.3
-
20
-
-
0012907473
-
Clustering and knowledge discovery in spatial databases
-
1997
-
Xu, X., Ester, M., Kriegel, H. P., and Sander, J. (1997). Clustering and knowledge discovery in spatial databases. Vistas in Astronomy, 41(1997), pp. 397-403.
-
(1997)
Vistas in Astronomy
, vol.41
, pp. 397-403
-
-
Xu, X.1
Ester, M.2
Kriegel, H.P.3
Sander, J.4
-
21
-
-
0014976008
-
Graph-theoretical methods for detecting and describing gestalt clusters
-
C-20 (Apr. 1971)
-
Zahn, C. T. (1971) Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters, IEEE Trans. Comput. C-20 (Apr. 1971), pp. 68-86.
-
(1971)
IEEE Trans. Comput.
, pp. 68-86
-
-
Zahn, C.T.1
-
22
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
ACM Press
-
Zhang, T., Ramakrishnan, R., and Linvy, M. (1996). BIRCH: an efficient data clustering method for very large databases, Proc. ACM SIGMOD Int'l Conf. on Management of Data, ACM Press, pp. 103-114.
-
(1996)
Proc. ACM SIGMOD Int'l Conf. on Management of Data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Linvy, M.3
|