메뉴 건너뛰기




Volumn 1, Issue , 2004, Pages 571-575

GraphZip: A fast and automatic compression method for spatial data clustering

Author keywords

Clustering; Data compression; Spatial databases

Indexed keywords

ALGORITHMS; BENCHMARKING; DATA ACQUISITION; DATA MINING; DATABASE SYSTEMS; GRAPH THEORY; HIERARCHICAL SYSTEMS; INFORMATION ANALYSIS; MATHEMATICAL TRANSFORMATIONS; TREES (MATHEMATICS);

EID: 2442434704     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (22)
  • 1
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • Bentley, J. L. (1975). Multidimensional Binary Search Trees Used for Associative Searching. Communications of the ACM 18(9), pp. 509-517.
    • (1975) Communications of the ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1
  • 3
    • 26944461753 scopus 로고    scopus 로고
    • Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data
    • Ertoz, L., Steinbach, M., and Kumar, V. (2003), Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data, Proc. of SIAM DM03.
    • (2003) Proc. of SIAM DM03
    • Ertoz, L.1    Steinbach, M.2    Kumar, V.3
  • 5
    • 4143100697 scopus 로고    scopus 로고
    • AUTOCLUST: Automatic clustering via boundary extraction for mining massive point-data sets
    • Geo Computation CD-ROM: GC049, ISBN 0-9533477-2-9
    • th Int'l Conf. on Geocomputation, Geo Computation CD-ROM: GC049, ISBN 0-9533477-2-9.
    • (2000) th Int'l Conf. on Geocomputation
    • Estivill-Castro, V.1    Lee, I.2
  • 7
    • 0032652570 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • Guha, S., Rastogi, R., and Shim, K. (1999). ROCK: a robust clustering algorithm for categorical attributes. Proc. 1999 Int. Conf. on Data Eng., pp. 512-521.
    • (1999) Proc. 1999 Int. Conf. on Data Eng. , pp. 512-521
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 9
    • 0010415411 scopus 로고    scopus 로고
    • Spatial clustering methods in data mining: A survey
    • H. Miller and J. Han (eds.), Taylor and Francis
    • Han, J., Kamber, M., and Tung, A. K. H. (2001). Spatial clustering methods in data mining: A survey, H. Miller and J. Han (eds.), Geographic Data Mining and Knowledge Discovery, Taylor and Francis.
    • (2001) Geographic Data Mining and Knowledge Discovery
    • Han, J.1    Kamber, M.2    Tung, A.K.H.3
  • 11
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON, A hierarchical clustering algorithm using dynamic modeling
    • Karypis, G., Han, E., and Kumar, V. (1999). CHAMELEON, A hierarchical clustering algorithm using dynamic modeling, IEEE Computer, Vol.32, pp. 68-75.
    • (1999) IEEE Computer , vol.32 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 13
    • 0034592784 scopus 로고    scopus 로고
    • Efficient clustering of high-dimensional data sets with application to reference matching
    • ACM Press
    • McCallum, A. Nigam, K., and Ungar, L. (2000). Efficient clustering of high-dimensional data sets with application to reference matching. Proc. of KDD2000, ACM Press, pp. 169-178.
    • (2000) Proc. of KDD2000 , pp. 169-178
    • McCallum, A.1    Nigam, K.2    Ungar, L.3
  • 15
    • 84899029127 scopus 로고    scopus 로고
    • Very fast EM-based mixture model clustering using multiresolution kd-trees
    • (1999), Morgan Kaufman
    • Moore, A. (1999). Very fast EM-based mixture model clustering using multiresolution kd-trees. Advances in Neural Information Processing Systems, Vol 11 (1999), Morgan Kaufman, pp. 543-549.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 543-549
    • Moore, A.1
  • 17
    • 0004616914 scopus 로고    scopus 로고
    • Closest-point problems in computational geometry
    • J. R. Sack and J. Urrutia, editors, Elsevier Science Publishing
    • Smid, M. (1997). Closest-Point Problems in Computational Geometry. Handbook on Computational Geometry. J. R. Sack and J. Urrutia, editors, Elsevier Science Publishing, pp. 877-935.
    • (1997) Handbook on Computational Geometry , pp. 877-935
    • Smid, M.1
  • 18
    • 0000662711 scopus 로고
    • An O(nlogn) algorithm for the allnearest-neighbors problem
    • 1989
    • Vaidya, P. M., (1989). An O(nlogn) algorithm for the allnearest-neighbors problem. Discrete & Computational Geometry 4 (1989), pp. 101-115.
    • (1989) Discrete & Computational Geometry , vol.4 , pp. 101-115
    • Vaidya, P.M.1
  • 19
    • 84994158589 scopus 로고    scopus 로고
    • STING: A statistical information grid approach to spatial data mining
    • Morgan Kaufmann
    • Wang, W., Yang, J., and Muntz, R. (1997). STING: A Statistical Information Grid Approach to Spatial Data Mining, Proc. of the 23rd Int. Conf. on Very Large Data Bases, Morgan Kaufmann, pp. 186-195.
    • (1997) Proc. of the 23rd Int. Conf. on Very Large Data Bases , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.3
  • 20
    • 0012907473 scopus 로고    scopus 로고
    • Clustering and knowledge discovery in spatial databases
    • 1997
    • Xu, X., Ester, M., Kriegel, H. P., and Sander, J. (1997). Clustering and knowledge discovery in spatial databases. Vistas in Astronomy, 41(1997), pp. 397-403.
    • (1997) Vistas in Astronomy , vol.41 , pp. 397-403
    • Xu, X.1    Ester, M.2    Kriegel, H.P.3    Sander, J.4
  • 21
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • C-20 (Apr. 1971)
    • Zahn, C. T. (1971) Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters, IEEE Trans. Comput. C-20 (Apr. 1971), pp. 68-86.
    • (1971) IEEE Trans. Comput. , pp. 68-86
    • Zahn, C.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.