메뉴 건너뛰기




Volumn 68, Issue 1-4, 2005, Pages 38-53

Output partitioning of neural networks

Author keywords

Constructive learning algorithm; Neural networks; Output partitioning

Indexed keywords

BACKPROPAGATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 24144491262     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2005.02.002     Document Type: Article
Times cited : (7)

References (31)
  • 1
    • 84945797434 scopus 로고
    • Dynamic node creation in backpropagation networks
    • T. Ash Dynamic node creation in backpropagation networks Connect. Sci. 1 4 1989 365-375
    • (1989) Connect. Sci. , vol.1 , Issue.4 , pp. 365-375
    • Ash, T.1
  • 3
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • E.B. Baum D. Haussler What size net gives valid generalization? Neural Comput. 1 1 1989 151-160
    • (1989) Neural Comput. , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 4
    • 0026453958 scopus 로고
    • Training a 3-node neural network is NP-complete
    • A. Blum R.L. Rivest Training a 3-node neural network is NP-complete Neural Networks 5 1 1992 117-128
    • (1992) Neural Networks , vol.5 , Issue.1 , pp. 117-128
    • Blum, A.1    Rivest, R.L.2
  • 5
    • 0003578240 scopus 로고
    • An empirical study of learning speed in backpropagation networks
    • Technical Report, CMU-CS-88-162, Carnegie-Mellon University
    • S.E. Fahlman, An empirical study of learning speed in backpropagation networks, Technical Report, CMU-CS-88-162, Carnegie-Mellon University, 1988.
    • (1988)
    • Fahlman, S.E.1
  • 6
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D.S. Touretzky (Ed.) Morgan Kaufmann Publishers CA
    • S.E. Fahlman C. Lebiere The cascade-correlation learning architecture in: D.S. Touretzky (Ed.) Advances in Neural Information Processing Systems vol. 2 1990 Morgan Kaufmann Publishers CA 524-532
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 7
    • 0035576171 scopus 로고    scopus 로고
    • Incremental learning with respect to new incoming input attributes
    • S.-U. Guan S. Li Incremental learning with respect to new incoming input attributes Neural Process. Lett. 14 3 2001 241-260
    • (2001) Neural Process. Lett. , vol.14 , Issue.3 , pp. 241-260
    • Guan, S.-U.1    Li, S.2
  • 8
    • 3242774399 scopus 로고    scopus 로고
    • Incremental learning in terms of output attributes
    • S.-U. Guan P. Li Incremental learning in terms of output attributes J Intell. Systems 13 2 2004 95-122
    • (2004) J. Intell. Systems , vol.13 , Issue.2 , pp. 95-122
    • Guan, S.-U.1    Li, P.2
  • 9
    • 0742321252 scopus 로고    scopus 로고
    • Incremental ordered neural network training
    • S.-U. Guan J. Liu Incremental ordered neural network training J. Intell. Systems 12 3 2002 137-172
    • (2002) J. Intell. Systems , vol.12 , Issue.3 , pp. 137-172
    • Guan, S.-U.1    Liu, J.2
  • 10
    • 2442628430 scopus 로고    scopus 로고
    • Incremental neural network training with an increasing input dimension
    • S.-U. Guan J. Liu Incremental neural network training with an increasing input dimension J Intell. Systems 13 1 2004 45-70
    • (2004) J Intell. Systems , vol.13 , Issue.1 , pp. 45-70
    • Guan, S.-U.1    Liu, J.2
  • 11
    • 0001940458 scopus 로고
    • Adaptive mixtures of local experts
    • R.A. Jacobs M.I. Jordan et al. Adaptive mixtures of local experts Neural Comput. 3 1 1991 79-87
    • (1991) Neural Comput. , vol.3 , Issue.1 , pp. 79-87
    • Jacobs, R.A.1    Jordan, M.I.2
  • 12
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • T.Y. Kwok D.Y. Yeung Objective functions for training new hidden units in constructive neural networks IEEE Trans. Neural Networks 8 5 1997 1131-1148
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.5 , pp. 1131-1148
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 13
    • 33645589873 scopus 로고    scopus 로고
    • Bayesian approach for neural networks
    • April
    • J. Lampinen, A. Vehtari, Bayesian approach for neural networks, Neural Networks April (2001) 7-24
    • (2001) Neural Networks , pp. 7-24
    • Lampinen, J.1    Vehtari, A.2
  • 14
    • 0032795250 scopus 로고    scopus 로고
    • Modelling with constructive backpropagation
    • M. Lehtokangas Modelling with constructive backpropagation Neural Networks 12 1999 707-716
    • (1999) Neural Networks , vol.12 , pp. 707-716
    • Lehtokangas, M.1
  • 15
    • 0025514862 scopus 로고
    • Problem decomposition and subgoaling in artificial neural networks
    • Los Angeles, CA
    • P. Liang, Problem decomposition and subgoaling in artificial neural networks, IEEE International Conference on Systems, Man and Cybernetics, Los Angeles, CA, 1990, pp.178-181.
    • (1990) IEEE International Conference on Systems, Man and Cybernetics , pp. 178-181
    • Liang, P.1
  • 16
    • 0003748256 scopus 로고
    • Bayesian methods for adaptive models
    • Ph.D. Thesis, California Institute of Technology
    • D.J.C. Mackay, Bayesian methods for adaptive models, Ph.D. Thesis, California Institute of Technology, 1991.
    • (1991)
    • Mackay, D.J.C.1
  • 17
    • 0002704818 scopus 로고
    • A practical bayesian framework for backpropagation
    • D.J.C. Mackay A practical bayesian framework for backpropagation Neural Comput. 4 1992 448-472
    • (1992) Neural Comput. , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 18
    • 0025056697 scopus 로고
    • Regularization algorithms for leaning that are equivalent to multi-layer networks
    • T. Poggio F. Girosi Regularization algorithms for leaning that are equivalent to multi-layer networks Science 247 1990 978-982
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 19
    • 0004042460 scopus 로고
    • PROBEN1: A set of neural network benchmark problems and benchmarking rules
    • Technical Report 21/94, Department of Informatics, University of Karlsruhe, Germany
    • L. Prechelt, PROBEN1: A set of neural network benchmark problems and benchmarking rules, Technical Report 21/94, Department of Informatics, University of Karlsruhe, Germany, 1994.
    • (1994)
    • Prechelt, L.1
  • 20
    • 0031193357 scopus 로고    scopus 로고
    • Investigation of the CasCor family of learning algorithms
    • L. Prechelt Investigation of the CasCor family of learning algorithms Neural Networks 10 5 1997 885-896
    • (1997) Neural Networks , vol.10 , Issue.5 , pp. 885-896
    • Prechelt, L.1
  • 21
    • 0027662338 scopus 로고
    • Pruning algorithm - A survey
    • R. Reed Pruning algorithm - a survey IEEE Trans. Neural Networks 4 5 1993 740-747
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 23
    • 0027809638 scopus 로고
    • Divide and conquer neural networks
    • S.G. Romaniuk L.O. Hall Divide and conquer neural networks Neural Networks V6 1993 1105-1116
    • (1993) Neural Networks , vol.V6 , pp. 1105-1116
    • Romaniuk, S.G.1    Hall, L.O.2
  • 24
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhart J.L. McClelland (Eds.) MIT Press Cambridge, MA
    • D.E. Rumelhart G. Hinton R. Williams Learning internal representations by error propagation in: D.E. Rumelhart J.L. McClelland (Eds.) Parallel Distributed Processing, Foundations vol. I 1986 MIT Press Cambridge, MA 318-362
    • (1986) Parallel Distributed Processing, Foundations , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.2    Williams, R.3
  • 25
    • 0031516467 scopus 로고    scopus 로고
    • Modularity, combining and artificial neural nets
    • A.J.C. Sharkey Modularity, combining and artificial neural nets Connect. Sci. 9 1 1997 3-10
    • (1997) Connect. Sci. , vol.9 , Issue.1 , pp. 3-10
    • Sharkey, A.J.C.1
  • 27
    • 2542563695 scopus 로고
    • Experimental analysis of aspects of the cascade-correlation learning architecture
    • Machine Learning Research Group Working Paper 91-1, Computer Science Department, University of Wisconsin-Madison
    • C.S. Squires, J.W. Shavlik, Experimental analysis of aspects of the cascade-correlation learning architecture, Machine Learning Research Group Working Paper 91-1, Computer Science Department, University of Wisconsin-Madison, 1991
    • (1991)
    • Squires, C.S.1    Shavlik, J.W.2
  • 28
    • 0025593679 scopus 로고
    • Supersab: Fast adaptive backpropagation with good scaling properties
    • T. Tollenaere Supersab: Fast adaptive backpropagation with good scaling properties Neural Networks 3 5 1990 561-573
    • (1990) Neural Networks , vol.3 , Issue.5 , pp. 561-573
    • Tollenaere, T.1
  • 29
    • 0005995498 scopus 로고    scopus 로고
    • A review of parallel implementations of backpropagation neural networks
    • N. Sundararajan P. Saratchandran (Eds.) IEEE Computer Society Press Los Alamitos, California
    • J. Torresen O. Landsvek A review of parallel implementations of backpropagation neural networks in: N. Sundararajan P. Saratchandran (Eds.) Parallel Architectures for Artificial Neural Networks: Paradigms and Implementations 1998 IEEE Computer Society Press Los Alamitos, California 25-63
    • (1998) Parallel Architectures for Artificial Neural Networks: Paradigms and Implementations , pp. 25-63
    • Torresen, J.1    Landsvek, O.2
  • 30
    • 0003420912 scopus 로고
    • Experiments with cascade-correlation algorithm
    • Technical Report 91-16, Department of Computer Science, Iowa State University
    • J. Yang, V. Honavar, Experiments with cascade-correlation algorithm, Technical Report 91-16, Department of Computer Science, Iowa State University, 1991.
    • (1991)
    • Yang, J.1    Honavar, V.2
  • 31
    • 33645608355 scopus 로고
    • A neural network approach to constructive induction
    • Proceedings of the Eighth International Workshop on Machine Learning, Evanston, Illinois, USA
    • D.Y. Yeung, A neural network approach to constructive induction, Proceedings of the Eighth International Workshop on Machine Learning, Evanston, Illinois, USA, 1991.
    • (1991)
    • Yeung, D.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.