-
1
-
-
0007107132
-
The number of spanning trees in the square of a cycle
-
G. Baron, H. Prodinger, R.F. Tichy, F.T. Boesch, and J.F. Wang The number of spanning trees in the square of a cycle Fibonacci Quart. 23.3 1985 258 264
-
(1985)
Fibonacci Quart.
, vol.233
, pp. 258-264
-
-
Baron, G.1
Prodinger, H.2
Tichy, R.F.3
Boesch, F.T.4
Wang, J.F.5
-
2
-
-
0242282679
-
The Fibonacci numbers via trigonometric expressions
-
S. Bedrosian The Fibonacci numbers via trigonometric expressions J. Franklin Inst. 295 1973 175 177
-
(1973)
J. Franklin Inst.
, vol.295
, pp. 175-177
-
-
Bedrosian, S.1
-
3
-
-
33645596225
-
Formulas for the number of trees in a networks
-
S.D. Bedrosian Formulas for the number of trees in a networks IEEE Trans. Circuit Theory CT-8 1961 363 364
-
(1961)
IEEE Trans. Circuit Theory
, vol.CT-8
, pp. 363-364
-
-
Bedrosian, S.D.1
-
4
-
-
33645586011
-
Generating formulas for the number of trees in a graph
-
S.D. Bedrosian Generating formulas for the number of trees in a graph J. Franklin Inst. 277 1964 313 326
-
(1964)
J. Franklin Inst.
, vol.277
, pp. 313-326
-
-
Bedrosian, S.D.1
-
5
-
-
0014719104
-
Formulas for the number of trees in certain incomplete graphs
-
S.D. Bedrosian Formulas for the number of trees in certain incomplete graphs J. Franklin Inst. 289 1970 67 69
-
(1970)
J. Franklin Inst.
, vol.289
, pp. 67-69
-
-
Bedrosian, S.D.1
-
6
-
-
33645596354
-
Tree counting polynomials for labelled graphs
-
S.D. Bedrosian Tree counting polynomials for labelled graphs J. Franklin Inst. 312 1981 417 430
-
(1981)
J. Franklin Inst.
, vol.312
, pp. 417-430
-
-
Bedrosian, S.D.1
-
7
-
-
0004242420
-
-
second ed. Cambridge University Press London
-
N. Biggs Algebraic Graph Theory second ed. 1993 Cambridge University Press London
-
(1993)
Algebraic Graph Theory
-
-
Biggs, N.1
-
8
-
-
0007014379
-
Spanning tree formulas and Chebyshev polynomials
-
F.T. Boesch, and H. Prodinger Spanning tree formulas and Chebyshev polynomials Graph Combin. 2 1986 191 200
-
(1986)
Graph Combin.
, vol.2
, pp. 191-200
-
-
Boesch, F.T.1
Prodinger, H.2
-
9
-
-
0042618947
-
A conjecture on the number of spanning trees in the square of a cycle
-
New York Academy Sciences, New York
-
F.T. Boesch, J.F. Wang, A conjecture on the number of spanning trees in the square of a cycle, in: Notes from New York Graph Theory Day V, New York Academy Sciences, New York, 1982, pp. 16.
-
(1982)
Notes from New York Graph Theory Day
, vol.5
, pp. 16
-
-
Boesch, F.T.1
Wang, J.F.2
-
13
-
-
0041194628
-
Maximizing spanning trees in almost complete graphs
-
B. Gilbert, and W. Myrvold Maximizing spanning trees in almost complete graphs Networks 30 1997 97 104
-
(1997)
Networks
, vol.30
, pp. 97-104
-
-
Gilbert, B.1
Myrvold, W.2
-
14
-
-
33645592754
-
Further applications of Chebyshev polynomials in the derivation of spanning tree formulas for circulant graphs
-
Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities Versailles, France, September 16-19, Birkhäuser-Verlag, Basel
-
M.J. Golin, Y. Zhang, Further applications of Chebyshev polynomials in the derivation of spanning tree formulas for circulant graphs, in: Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities, Proceedings of the International Colloquium on Mathematics and Computer Science, Versailles, France, September 16-19, Birkhäuser-Verlag, Basel, 2002, pp. 541-552.
-
(2002)
Proceedings of the International Colloquium on Mathematics and Computer Science
, pp. 541-552
-
-
Golin, M.J.1
Zhang, Y.2
-
15
-
-
33645592883
-
A general method for finding the number of spanning trees of some types of composite graphs
-
Z.J. Huang, and X.M. Li A general method for finding the number of spanning trees of some types of composite graphs Acta Math. Sci. 15 3 1995 259 268 (Chinese)
-
(1995)
Acta Math. Sci.
, vol.15
, Issue.3
, pp. 259-268
-
-
Huang, Z.J.1
Li, X.M.2
-
16
-
-
0040555950
-
A certain polynomial of a graph and graphs with an extremal number of trees
-
A.K. Kel'mans, and V.M. Chelnokov A certain polynomial of a graph and graphs with an extremal number of trees J. Combin. Theory (B) 16 1974 197 214
-
(1974)
J. Combin. Theory (B)
, vol.16
, pp. 197-214
-
-
Kel'Mans, A.K.1
Chelnokov, V.M.2
-
17
-
-
4944257625
-
Über die Auflösung der Gleichungen auf, welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird
-
G. Kirchhoff Über die Auflösung der Gleichungen auf, welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird Ann. Phys. Chem. 72 1847 497 508
-
(1847)
Ann. Phys. Chem.
, vol.72
, pp. 497-508
-
-
Kirchhoff, G.1
-
18
-
-
0042117791
-
Counting trees in a certain class of graphs
-
D.J. Kleitman, and B. Golden Counting trees in a certain class of graphs Amer. Math. Monthly 82 1975 40 44
-
(1975)
Amer. Math. Monthly
, vol.82
, pp. 40-44
-
-
Kleitman, D.J.1
Golden, B.2
-
19
-
-
0032002349
-
On the number of spanning trees of multi-star related graph
-
S.D. Nikolopoulos, and P. Rondogiannis On the number of spanning trees of multi-star related graph Inform. Process. Lett. 65 1998 183 188
-
(1998)
Inform. Process. Lett.
, vol.65
, pp. 183-188
-
-
Nikolopoulos, S.D.1
Rondogiannis, P.2
-
20
-
-
0042815947
-
The number of spanning trees in a certain network
-
P.V. O'Neil The number of spanning trees in a certain network Notices Amer. Math. Soc. 10 1963 569
-
(1963)
Notices Amer. Math. Soc.
, vol.10
, pp. 569
-
-
O'Neil, P.V.1
-
21
-
-
33645583647
-
Enumeration of spanning trees in certain graphs
-
P.V. O'Neil Enumeration of spanning trees in certain graphs IEEE Trans. Circuit Theory CT-17 1970 250
-
(1970)
IEEE Trans. Circuit Theory
, vol.CT-17
, pp. 250
-
-
O'Neil, P.V.1
-
23
-
-
0041935085
-
Number of trees in graph
-
L. Weinberg Number of trees in graph Proc. IRE 46 1958 1954 1955
-
(1958)
Proc. IRE
, vol.46
, pp. 1954-1955
-
-
Weinberg, L.1
-
24
-
-
0032309324
-
A formula for the number of spanning trees of a multi-star related graph
-
W.M. Yan, W. Myrvold, and K.L. Chung A formula for the number of spanning trees of a multi-star related graph Inform. Process. Lett. 68 1998 295 298
-
(1998)
Inform. Process. Lett.
, vol.68
, pp. 295-298
-
-
Yan, W.M.1
Myrvold, W.2
Chung, K.L.3
-
25
-
-
0041545021
-
4
-
X. Yong, Talip, and Acenjian The numbers of spanning trees of the cubic cycle C N 3 and the quadruple cycle C N 4 Discrete Math. 169 1997 293 298
-
(1997)
Discrete Math.
, vol.169
, pp. 293-298
-
-
Yong, X.1
Talip2
Acenjian3
-
26
-
-
0042618946
-
2
-
X. Yong, and F.J. Zhang A simple proof for the complexity of square cycle C p 2 J. Xinjiang Univ. 11 1994 12 16
-
(1994)
J. Xinjiang Univ.
, vol.11
, pp. 12-16
-
-
Yong, X.1
Zhang, F.J.2
-
27
-
-
0242377377
-
The number of spanning trees in circulant graphs
-
Y.P. Zhang, X. Yong, and M.J. Golin The number of spanning trees in circulant graphs Discrete Math. 223 2000 337 350
-
(2000)
Discrete Math.
, vol.223
, pp. 337-350
-
-
Zhang, Y.P.1
Yong, X.2
Golin, M.J.3
|