메뉴 건너뛰기




Volumn 298, Issue 1-3, 2005, Pages 334-364

Chebyshev polynomials and spanning tree formulas for circulant and related graphs

Author keywords

Chebyshev polynomials; Circulant graphs; Spanning trees

Indexed keywords

MATRIX ALGEBRA; POLYNOMIALS; THEOREM PROVING;

EID: 24144436020     PISSN: 0012365X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.disc.2004.10.025     Document Type: Conference Paper
Times cited : (65)

References (27)
  • 2
    • 0242282679 scopus 로고
    • The Fibonacci numbers via trigonometric expressions
    • S. Bedrosian The Fibonacci numbers via trigonometric expressions J. Franklin Inst. 295 1973 175 177
    • (1973) J. Franklin Inst. , vol.295 , pp. 175-177
    • Bedrosian, S.1
  • 3
    • 33645596225 scopus 로고
    • Formulas for the number of trees in a networks
    • S.D. Bedrosian Formulas for the number of trees in a networks IEEE Trans. Circuit Theory CT-8 1961 363 364
    • (1961) IEEE Trans. Circuit Theory , vol.CT-8 , pp. 363-364
    • Bedrosian, S.D.1
  • 4
    • 33645586011 scopus 로고
    • Generating formulas for the number of trees in a graph
    • S.D. Bedrosian Generating formulas for the number of trees in a graph J. Franklin Inst. 277 1964 313 326
    • (1964) J. Franklin Inst. , vol.277 , pp. 313-326
    • Bedrosian, S.D.1
  • 5
    • 0014719104 scopus 로고
    • Formulas for the number of trees in certain incomplete graphs
    • S.D. Bedrosian Formulas for the number of trees in certain incomplete graphs J. Franklin Inst. 289 1970 67 69
    • (1970) J. Franklin Inst. , vol.289 , pp. 67-69
    • Bedrosian, S.D.1
  • 6
    • 33645596354 scopus 로고
    • Tree counting polynomials for labelled graphs
    • S.D. Bedrosian Tree counting polynomials for labelled graphs J. Franklin Inst. 312 1981 417 430
    • (1981) J. Franklin Inst. , vol.312 , pp. 417-430
    • Bedrosian, S.D.1
  • 7
    • 0004242420 scopus 로고
    • second ed. Cambridge University Press London
    • N. Biggs Algebraic Graph Theory second ed. 1993 Cambridge University Press London
    • (1993) Algebraic Graph Theory
    • Biggs, N.1
  • 8
    • 0007014379 scopus 로고
    • Spanning tree formulas and Chebyshev polynomials
    • F.T. Boesch, and H. Prodinger Spanning tree formulas and Chebyshev polynomials Graph Combin. 2 1986 191 200
    • (1986) Graph Combin. , vol.2 , pp. 191-200
    • Boesch, F.T.1    Prodinger, H.2
  • 9
    • 0042618947 scopus 로고
    • A conjecture on the number of spanning trees in the square of a cycle
    • New York Academy Sciences, New York
    • F.T. Boesch, J.F. Wang, A conjecture on the number of spanning trees in the square of a cycle, in: Notes from New York Graph Theory Day V, New York Academy Sciences, New York, 1982, pp. 16.
    • (1982) Notes from New York Graph Theory Day , vol.5 , pp. 16
    • Boesch, F.T.1    Wang, J.F.2
  • 13
    • 0041194628 scopus 로고    scopus 로고
    • Maximizing spanning trees in almost complete graphs
    • B. Gilbert, and W. Myrvold Maximizing spanning trees in almost complete graphs Networks 30 1997 97 104
    • (1997) Networks , vol.30 , pp. 97-104
    • Gilbert, B.1    Myrvold, W.2
  • 14
    • 33645592754 scopus 로고    scopus 로고
    • Further applications of Chebyshev polynomials in the derivation of spanning tree formulas for circulant graphs
    • Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities Versailles, France, September 16-19, Birkhäuser-Verlag, Basel
    • M.J. Golin, Y. Zhang, Further applications of Chebyshev polynomials in the derivation of spanning tree formulas for circulant graphs, in: Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities, Proceedings of the International Colloquium on Mathematics and Computer Science, Versailles, France, September 16-19, Birkhäuser-Verlag, Basel, 2002, pp. 541-552.
    • (2002) Proceedings of the International Colloquium on Mathematics and Computer Science , pp. 541-552
    • Golin, M.J.1    Zhang, Y.2
  • 15
    • 33645592883 scopus 로고
    • A general method for finding the number of spanning trees of some types of composite graphs
    • Z.J. Huang, and X.M. Li A general method for finding the number of spanning trees of some types of composite graphs Acta Math. Sci. 15 3 1995 259 268 (Chinese)
    • (1995) Acta Math. Sci. , vol.15 , Issue.3 , pp. 259-268
    • Huang, Z.J.1    Li, X.M.2
  • 16
    • 0040555950 scopus 로고
    • A certain polynomial of a graph and graphs with an extremal number of trees
    • A.K. Kel'mans, and V.M. Chelnokov A certain polynomial of a graph and graphs with an extremal number of trees J. Combin. Theory (B) 16 1974 197 214
    • (1974) J. Combin. Theory (B) , vol.16 , pp. 197-214
    • Kel'Mans, A.K.1    Chelnokov, V.M.2
  • 17
    • 4944257625 scopus 로고
    • Über die Auflösung der Gleichungen auf, welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird
    • G. Kirchhoff Über die Auflösung der Gleichungen auf, welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird Ann. Phys. Chem. 72 1847 497 508
    • (1847) Ann. Phys. Chem. , vol.72 , pp. 497-508
    • Kirchhoff, G.1
  • 18
    • 0042117791 scopus 로고
    • Counting trees in a certain class of graphs
    • D.J. Kleitman, and B. Golden Counting trees in a certain class of graphs Amer. Math. Monthly 82 1975 40 44
    • (1975) Amer. Math. Monthly , vol.82 , pp. 40-44
    • Kleitman, D.J.1    Golden, B.2
  • 19
    • 0032002349 scopus 로고    scopus 로고
    • On the number of spanning trees of multi-star related graph
    • S.D. Nikolopoulos, and P. Rondogiannis On the number of spanning trees of multi-star related graph Inform. Process. Lett. 65 1998 183 188
    • (1998) Inform. Process. Lett. , vol.65 , pp. 183-188
    • Nikolopoulos, S.D.1    Rondogiannis, P.2
  • 20
    • 0042815947 scopus 로고
    • The number of spanning trees in a certain network
    • P.V. O'Neil The number of spanning trees in a certain network Notices Amer. Math. Soc. 10 1963 569
    • (1963) Notices Amer. Math. Soc. , vol.10 , pp. 569
    • O'Neil, P.V.1
  • 21
    • 33645583647 scopus 로고
    • Enumeration of spanning trees in certain graphs
    • P.V. O'Neil Enumeration of spanning trees in certain graphs IEEE Trans. Circuit Theory CT-17 1970 250
    • (1970) IEEE Trans. Circuit Theory , vol.CT-17 , pp. 250
    • O'Neil, P.V.1
  • 23
    • 0041935085 scopus 로고
    • Number of trees in graph
    • L. Weinberg Number of trees in graph Proc. IRE 46 1958 1954 1955
    • (1958) Proc. IRE , vol.46 , pp. 1954-1955
    • Weinberg, L.1
  • 24
    • 0032309324 scopus 로고    scopus 로고
    • A formula for the number of spanning trees of a multi-star related graph
    • W.M. Yan, W. Myrvold, and K.L. Chung A formula for the number of spanning trees of a multi-star related graph Inform. Process. Lett. 68 1998 295 298
    • (1998) Inform. Process. Lett. , vol.68 , pp. 295-298
    • Yan, W.M.1    Myrvold, W.2    Chung, K.L.3
  • 25
    • 0041545021 scopus 로고    scopus 로고
    • 4
    • X. Yong, Talip, and Acenjian The numbers of spanning trees of the cubic cycle C N 3 and the quadruple cycle C N 4 Discrete Math. 169 1997 293 298
    • (1997) Discrete Math. , vol.169 , pp. 293-298
    • Yong, X.1    Talip2    Acenjian3
  • 26
    • 0042618946 scopus 로고
    • 2
    • X. Yong, and F.J. Zhang A simple proof for the complexity of square cycle C p 2 J. Xinjiang Univ. 11 1994 12 16
    • (1994) J. Xinjiang Univ. , vol.11 , pp. 12-16
    • Yong, X.1    Zhang, F.J.2
  • 27
    • 0242377377 scopus 로고    scopus 로고
    • The number of spanning trees in circulant graphs
    • Y.P. Zhang, X. Yong, and M.J. Golin The number of spanning trees in circulant graphs Discrete Math. 223 2000 337 350
    • (2000) Discrete Math. , vol.223 , pp. 337-350
    • Zhang, Y.P.1    Yong, X.2    Golin, M.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.