메뉴 건너뛰기




Volumn 35, Issue 4, 2003, Pages 505-511

Mean-field solution of the parity-conserving kinetic phase transition in one dimension

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; MATHEMATICAL MODELS; MONTE CARLO METHODS; PHASE TRANSITIONS; RANDOM PROCESSES;

EID: 23944520348     PISSN: 14346028     EISSN: None     Source Type: Journal    
DOI: 10.1140/epjb/e2003-00303-4     Document Type: Article
Times cited : (5)

References (54)
  • 5
    • 33645440650 scopus 로고    scopus 로고
    • G. Odor, cond-mat/0205644
    • G. Odor, cond-mat/0205644;
  • 6
    • 0001697794 scopus 로고    scopus 로고
    • Fourth Granada Lectures in Computational Physics, edited by P.L. Garrido, J. Marro, (Springer, Berlin)
    • G. Grinstein, M.A. Muñoz, in Fourth Granada Lectures in Computational Physics, edited by P.L. Garrido, J. Marro, Lecture Notes in Physics, Vol. 493 (Springer, Berlin 1997), p. 223
    • (1997) Lecture Notes in Physics , vol.493 , pp. 223
    • Grinstein, G.1    Muñoz, M.A.2
  • 16
    • 33645430228 scopus 로고    scopus 로고
    • note
    • 2-symmetry (at least in one dimension). Owing to this reason this class is usually (improperly) called conserved-parity [4]
  • 35
    • 0002394705 scopus 로고    scopus 로고
    • J. Stat. Phys. 90, 1 (1998).
    • (1998) J. Stat. Phys. , vol.90 , pp. 1
  • 42
    • 0035675126 scopus 로고    scopus 로고
    • Phys. Rev. E, 64, 062101 (2001)
    • (2001) Phys. Rev. E , vol.64 , pp. 062101
  • 51
    • 33645439298 scopus 로고    scopus 로고
    • private communication
    • A. Szolnoki (private communication) has performed a cluster mean field analysis of the present model, and observed that a phase transition is obtained considering clusters with at least four sites. He has gone up to 7-sites, and shown that the results improve very slowly upon enlarging cluster size
    • Szolnoki, A.1
  • 52
    • 33645430371 scopus 로고    scopus 로고
    • note
    • The same transition is observed whether one fixes r and treats Γ/Ω as a critical field, or whether one fixes Γ/Ω and takes r to be the critical field. Here we adopt the latter, with Γ/ Ω = 1
  • 53
    • 33645428428 scopus 로고    scopus 로고
    • note
    • Observe that in this type of systems we do not have an exponential decay in the absorbing phase, but a power-law one, controlled asymptotically by the reaction A + A → 0


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.