메뉴 건너뛰기




Volumn 12, Issue 2, 2003, Pages 141-152

Use of noise to augment training data: A neural network method of mineral-potential mapping in regions of limited known deposit examples

Author keywords

Archean orogenic gold deposits; Geographic information systems (GIS); Mineral prospectivity maps; Multilayer perceptrons (MLP); Neural networks; Random noise

Indexed keywords


EID: 23944483793     PISSN: 15207439     EISSN: 15738981     Source Type: Journal    
DOI: 10.1023/A:1024218913435     Document Type: Article
Times cited : (73)

References (26)
  • 1
    • 2342565172 scopus 로고    scopus 로고
    • The effects of adding noise during backpropagation training on a generalization performance
    • An, G., 1996, The effects of adding noise during backpropagation training on a generalization performance: Neural Computation, v. 8, no. 3, p. 643-647.
    • (1996) Neural Computation , vol.8 , Issue.3 , pp. 643-647
    • An, G.1
  • 3
    • 33646847347 scopus 로고    scopus 로고
    • Artificial neural networks: A new method of mineral prospectivity mapping
    • Univ.Western Australia (Perth)
    • Brown, W. M., 2002, Artificial neural networks: a new method of mineral prospectivity mapping: unpubl. doctoral dissertation, Univ.Western Australia (Perth), 760 p.
    • (2002) Unpubl. Doctoral Dissertation , pp. 760
    • Brown, W.M.1
  • 4
    • 33947234500 scopus 로고    scopus 로고
    • Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral potential mapping
    • press
    • Brown, W. M., Groves, D. I., and Gedeon, T. D., 2002, Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral potential mapping: Natural Resources Research, v. 12, no. 3, in press.
    • (2002) Natural Resources Research , vol.12 , Issue.3
    • Brown, W.M.1    Groves, D.I.2    Gedeon, T.D.3
  • 5
    • 78649621028 scopus 로고    scopus 로고
    • Bivariate J-function and other graphical statistical methods help select the best predictor variables as inputs for a neural network method of mineral prospectivity mapping
    • Bayer,U., and Burger, H., and Skala,W., eds.
    • Brown, W. M., Baddeley, A., Gedeon, T. D., and Groves, D. I., 2002, Bivariate J-function and other graphical statistical methods help select the best predictor variables as inputs for a neural network method of mineral prospectivity mapping, in Bayer,U., and Burger, H., and Skala,W., eds.,IAMG2002: 8th Ann. Conf. Intern. Assoc. Mathematical Geology (Berlin), v. 1, p. 263-268.
    • (2002) IAMG2002: 8th Ann. Conf. Intern. Assoc. Mathematical Geology (Berlin) , vol.1 , pp. 263-268
    • Brown, W.M.1    Baddeley, A.2    Gedeon, T.D.3    Groves, D.I.4
  • 6
    • 0033816133 scopus 로고    scopus 로고
    • Artificial neural networks: A new method for mineral prospectivity mapping
    • Brown, W. M., Gedeon, T. D., Groves, D. I., and Barnes, R. G., 2000, Artificial neural networks: a new method for mineral prospectivity mapping: Australian Jour. Earth Sciences, v. 47, no. 4, p. 757-770.
    • (2000) Australian Jour. Earth Sciences , vol.47 , Issue.4 , pp. 757-770
    • Brown, W.M.1    Gedeon, T.D.2    Groves, D.I.3    Barnes, R.G.4
  • 7
    • 78649604266 scopus 로고    scopus 로고
    • Application of artifical neural networks to prospectivity analysis in a GIS environment: A comparison with statistical and fuzzy logic methods for Au and Sn deposits of the Tenterfield area, NSW (abst.)
    • Brown, W. M., Taylor, G. R. T., Jusmady, Groves, D. I., and Knox- Robinson,C. M., 1997, Application of artifical neural networks to prospectivity analysis in a GIS environment: a comparison with statistical and fuzzy logic methods for Au and Sn deposits of the Tenterfield area, NSW (abst.), in 14th Australian Geol. Conv. Abstracts, Geol. Soc. Australia, v. 49, p. 57.
    • (1997) 14th Australian Geol. Conv. Abstracts, Geol. Soc. Australia , vol.49 , pp. 57
    • Brown, W.M.1    Taylor, G.R.T.2    Jusmady Groves, D.I.3    Knox-Robinson, C.M.4
  • 8
    • 0011213245 scopus 로고
    • Fault tolerance training improves generalization and robustness
    • New York
    • Clay, R. D., and Sequin, C. H., 1992, Fault tolerance training improves generalization and robustness, in Intern. Joint Conf. Neural Network (IJCNN 1992), IEEE, New York, v. 4, p. 769- 774.
    • (1992) Intern. Joint Conf. Neural Network (IJCNN 1992) IEEE , vol.4 , pp. 769-774
    • Clay, R.D.1    Sequin, C.H.2
  • 10
    • 0033810884 scopus 로고    scopus 로고
    • Late-kinematic timing of orogenic gold deposits and significance for computerbased exploration techniques with emphasis on the Yilgarn Block
    • Groves,D. I., Goldfarb,R. J., Knox-Robinson,C., Ojala, J., Gardoll, S., Yun, G., and Holyland, P., 2000, Late-kinematic timing of orogenic gold deposits and significance for computerbased exploration techniques with emphasis on the Yilgarn Block, Western Australia: Ore Geology Reviews, v. 17, no. 1, p. 1-38.
    • (2000) Western Australia: Ore Geology Reviews , vol.17 , Issue.1 , pp. 1-38
    • Groves, D.I.1    Goldfarb, R.J.2    Knox-Robinson, C.3    Ojala, J.4    Gardoll, S.5    Yun, G.6    Holyland, P.7
  • 12
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan,M.T., and Menhaj, M., 1994,Training feedforward networks with the Marquardt algorithm: IEEE Trans. Neural Networks, v. 5, no. 6, p. 989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 13
    • 0001858551 scopus 로고    scopus 로고
    • Mineral favorability mapping: A comparison of artificial neural networks logistic regression, and discriminant analysis
    • Harris, D., and Pan, G., 1999, Mineral favorability mapping: a comparison of artificial neural networks, logistic regression, and discriminant analysis: Natural Resources Research, v. 8, no. 2, p. 93-109.
    • (1999) Natural Resources Research , vol.8 , Issue.2 , pp. 93-109
    • Harris, D.1    Pan, G.2
  • 14
    • 0026624071 scopus 로고
    • Using additive noise in back-propagation training
    • Holmstrom, L., and Koistinen, P., 1992, Using additive noise in back-propagation training: IEEE Trans. Neural Networks, v. 3, no. 1, p. 24-38.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.1 , pp. 24-38
    • Holmstrom, L.1    Koistinen, P.2
  • 15
    • 0000821295 scopus 로고
    • Generalization in a linear perceptron in the presence of noise
    • Krogh, A., and Hertz, J. A., 1992, Generalization in a linear perceptron in the presence of noise: Jour. Physics A (Mathematical & General). v. 25, no. 5, p. 1135-47.
    • (1992) Jour. Physics A (Mathematical & General) , vol.25 , Issue.5 , pp. 1135-47
    • Krogh, A.1    Hertz, J.A.2
  • 17
    • 0026858102 scopus 로고
    • Noise injection into inputs in back-propagation learning
    • Matsuoka, K., 1992, Noise injection into inputs in back-propagation learning: IEEE Trans. Systems, Man and Cybernetics, v. 22, no. 3, p. 436-440.
    • (1992) IEEE Trans. Systems Man and Cybernetics , vol.22 , Issue.3 , pp. 436-440
    • Matsuoka, K.1
  • 18
    • 0033339950 scopus 로고    scopus 로고
    • Improving the performance of multi-layer perceptrons where limited training data are available for some classes
    • Parikh, C. R., Pont, M. J., and Jones, N. B., 1999, Improving the performance of multi-layer perceptrons where limited training data are available for some classes, in ICANN99, Ninth Intern. Conf. Artificial Neural Networks, Conf. Publ. No. 470, v. 1, p. 227-232.
    • (1999) ICANN99, Ninth Intern. Conf. Artificial Neural Networks, Conf. Publ. , vol.1 , Issue.470 , pp. 227-232
    • Parikh, C.R.1    Pont, M.J.2    Jones, N.B.3
  • 19
    • 84942839657 scopus 로고
    • An equivalence between sigmoidal gain scaling and training with noisy (jittered) input data
    • New York
    • Reed, R., Marks II, R. J., and Oh, S., 1992, An equivalence between sigmoidal gain scaling and training with noisy (jittered) input data, in RNNS/IEEE Symp. Neuroinformatics and Neurocomputers: IEEE, New York, v. 1, p. 120-127.
    • (1992) RNNS/ IEEE Symp. Neuroinformatics and Neurocomputers: IEEE , vol.1 , pp. 120-127
    • Reed, R.1    Marks II, R.J.2    Oh, S.3
  • 20
    • 0029306953 scopus 로고
    • Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter
    • Reed, R., Marks II, R. J., and Oh, S., 1995, Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter: IEEE Trans. Neural Networks, v. 6, no. 3, p. 529- 538.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.3 , pp. 529-538
    • Reed, R.1    Marks II, R.J.2    Oh, S.3
  • 21
    • 0000646059 scopus 로고
    • Learning internal representations by error Propagation
    • Rumelhart, D. E., and McClelland, J. L., eds., Cambridge, Massachusetts
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986, Learning internal representations by error Propagation, in Rumelhart, D. E., and McClelland, J. L., eds., Parallel Data Processing, M.I.T. Press, v. 1, Cambridge, Massachusetts, p. 318- 362.
    • (1986) Parallel Data Processing, M.I.T. Press 1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 22
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma, J., and Dow, R. J. F., 1991, Creating artificial neural networks that generalize: Neural Networks, v. 4, no. 1, p. 67-79.
    • (1991) Neural Networks , vol.4 , Issue.1 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 24
    • 0033333990 scopus 로고    scopus 로고
    • Training neural networks with additive noise in the desired signal
    • Wang, C., and Principe, J. C., 1999, Training neural networks with additive noise in the desired signal: IEEE Trans. Neural Networks, v. 10, no. 6, p. 1511-1517.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.6 , pp. 1511-1517
    • Wang, C.1    Principe, J.C.2
  • 26
    • 17044379546 scopus 로고    scopus 로고
    • Neural networks for intelligent signal processing
    • Singapore
    • Zaknich, A., 2003, Neural networks for intelligent signal processing: World Scientific, Singapore, 508 p.
    • (2003) World Scientific , pp. 508
    • Zaknich, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.