-
1
-
-
0344088407
-
A fractional Helly theorem for convex lattice sets
-
I. Bárány and J. Matoušek, A fractional Helly theorem for convex lattice sets, Adv. Math. 174 (2003), 227-235.
-
(2003)
Adv. Math.
, vol.174
, pp. 227-235
-
-
Bárány, I.1
Matoušek, J.2
-
2
-
-
0039848599
-
Asymptotic formulae for the lattice point enumerator
-
U. Betke and K. Böröczky, Jr., Asymptotic formulae for the lattice point enumerator, Canad. J. Math. 51 (1999), 225-249.
-
(1999)
Canad. J. Math.
, vol.51
, pp. 225-249
-
-
Betke, U.1
Böröczky Jr., K.2
-
3
-
-
0036612671
-
Determining convex polygons from their covariograms
-
G. Bianchi, Determining convex polygons from their covariograms, Adv. in Appl Prob. 34 (2002), 261-266.
-
(2002)
Adv. in Appl Prob.
, vol.34
, pp. 261-266
-
-
Bianchi, G.1
-
4
-
-
23944469250
-
Matheron's conjecture for the covariogram problem
-
G. Bianchi, Matheron's conjecture for the covariogram problem, J. London Math. Soc. (2) 71 (2005), 203-220.
-
(2005)
J. London Math. Soc.
, vol.2
, Issue.71
, pp. 203-220
-
-
Bianchi, G.1
-
6
-
-
0037811210
-
An algorithm reconstructing lattice convex sets
-
S. Brunetti and A. Daurat, An algorithm reconstructing lattice convex sets, Theoret. Comput. Sci. 304 (2003), 35-57.
-
(2003)
Theoret. Comput. Sci.
, vol.304
, pp. 35-57
-
-
Brunetti, S.1
Daurat, A.2
-
7
-
-
0037357688
-
Estimation of mean particle volume using the set covariance function
-
A. Cabo and A. Baddeley, Estimation of mean particle volume using the set covariance function, Adv. in Appl. Probab. 35 (2003), 27-46.
-
(2003)
Adv. in Appl. Probab.
, vol.35
, pp. 27-46
-
-
Cabo, A.1
Baddeley, A.2
-
8
-
-
33947598548
-
Cross-variance functions characterise bounded closed regular sets
-
Amsterdam
-
A. Cabo and R. H. P. Janssen, Cross-variance functions characterise bounded closed regular sets, CWI Technical Report, Amsterdam, 1994.
-
(1994)
CWI Technical Report
-
-
Cabo, A.1
Janssen, R.H.P.2
-
9
-
-
8344225244
-
Discrete convexity and unimodularity - I
-
V. I. Danilov and G. A. Koshevoy, Discrete convexity and unimodularity - I, Adv. Math. 189 (2004), 301-324.
-
(2004)
Adv. Math.
, vol.189
, pp. 301-324
-
-
Danilov, V.I.1
Koshevoy, G.A.2
-
10
-
-
23944513497
-
2
-
Presses Universitaires d'Orléans, Orléans
-
2, in: CNR'IUT2000, vol. 1, Presses Universitaires d'Orléans, Orléans, 2000, pp. 341-350.
-
(2000)
CNR'IUT2000
, vol.1
, pp. 341-350
-
-
Daurat, A.1
-
11
-
-
0037054423
-
The chords' problem
-
A. Daurat, Y. Gérard, and M. Nivat, The chords' problem, Theoret. Comput. Sci. 282 (2002), 319-336.
-
(2002)
Theoret. Comput. Sci.
, vol.282
, pp. 319-336
-
-
Daurat, A.1
Gérard, Y.2
Nivat, M.3
-
12
-
-
84867932322
-
Detection of the discrete convexity of polyominoes
-
I. Debled-Rennesson, J.-L. Rémy, and J. Rouyer-Degli, Detection of the discrete convexity of polyominoes, Discrete Appl. Math. 125 (2003), 115-133.
-
(2003)
Discrete Appl. Math.
, vol.125
, pp. 115-133
-
-
Debled-Rennesson, I.1
Rémy, J.-L.2
Rouyer-Degli, J.3
-
13
-
-
34250443845
-
Convexity in crystollographical lattices
-
J.-P. Doignon, Convexity in crystollographical lattices, J. Geom. 3 (1973), 71-85.
-
(1973)
J. Geom.
, vol.3
, pp. 71-85
-
-
Doignon, J.-P.1
-
14
-
-
0004182159
-
-
Cambridge University Press, New York, Corrections and update
-
R. J. Gardner, Geometric Tomography, Cambridge University Press, New York, 1995. Corrections and update available at http://www.ac.wwu.edu/~gardner.
-
(1995)
Geometric Tomography
-
-
Gardner, R.J.1
-
15
-
-
21744459240
-
Discrete tomography: Determination of finite sets by X-rays
-
R. J. Gardner and P. Gritzmann, Discrete tomography: determination of finite sets by X-rays, Trans. Amer. Math. Soc. 349 (1997), 2271-2295.
-
(1997)
Trans. Amer. Math. Soc.
, vol.349
, pp. 2271-2295
-
-
Gardner, R.J.1
Gritzmann, P.2
-
16
-
-
0003043650
-
Uniqueness and complexity in discrete tomography
-
ed. by G. T. Herman and A. Kuba, Birkhäuser, Boston, MA
-
R. J. Gardner and P. Gritzmann, Uniqueness and complexity in discrete tomography, in: Discrete Tomography: Foundations, Algorithms and Application, ed. by G. T. Herman and A. Kuba, Birkhäuser, Boston, MA, 1999, pp. 85-113.
-
(1999)
Discrete Tomography: Foundations, Algorithms and Application
, pp. 85-113
-
-
Gardner, R.J.1
Gritzmann, P.2
-
17
-
-
23044529304
-
A Brunn-Minkowski inequality for the integer lattice
-
R. J. Gardner and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc. 353 (2001), 3995-4024.
-
(2001)
Trans. Amer. Math. Soc.
, vol.353
, pp. 3995-4024
-
-
Gardner, R.J.1
Gronchi, P.2
-
18
-
-
0005899134
-
Affine inequalities and radial mean bodies
-
R. J. Gardner and G. Zhang, Affine inequalities and radial mean bodies, Amer. J. Math. 120 (1998), 493-504.
-
(1998)
Amer. J. Math.
, vol.120
, pp. 493-504
-
-
Gardner, R.J.1
Zhang, G.2
-
19
-
-
2642699200
-
-
Oxford University Press, New York
-
J. P. Glusker, B. K. Patterson, and M. Rossi, Patterson and Pattersons, Oxford University Press, New York, 1987.
-
(1987)
Patterson and Pattersons
-
-
Glusker, J.P.1
Patterson, B.K.2
Rossi, M.3
-
20
-
-
0000838163
-
Lattice points
-
ed. by P. M. Gruber and J. M. Wills, North-Holland, Amsterdam
-
P. Gritzmann and J. M. Wills, Lattice points, in: Handbook of Convexity, ed. by P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, 1993, pp. 765-797.
-
(1993)
Handbook of Convexity
, pp. 765-797
-
-
Gritzmann, P.1
Wills, J.M.2
-
22
-
-
0039023174
-
On the determination of probability distributions of more dimensions by their projections
-
A. Heppes, On the determination of probability distributions of more dimensions by their projections, Acta Math. Acad. Sci. Hung. 6 (1956), 403-410.
-
(1956)
Acta Math. Acad. Sci. Hung.
, vol.6
, pp. 403-410
-
-
Heppes, A.1
-
23
-
-
0003845773
-
-
Birkhäuser, Boston, MA
-
G. T. Herman and A. Kuba, Discrete Tomography: Foundations, Algorithms, and Applications, Birkhäuser, Boston, MA, 1999.
-
(1999)
Discrete Tomography: Foundations, Algorithms, and Applications
-
-
Herman, G.T.1
Kuba, A.2
-
24
-
-
0009830587
-
Line-intercept distributions do not characterize plane sets
-
C. L. Mallows and J. M. C. Clark, Line-intercept distributions do not characterize plane sets, J. Appl. Probab. 7 (1970), 240-244.
-
(1970)
J. Appl. Probab.
, vol.7
, pp. 240-244
-
-
Mallows, C.L.1
Clark, J.M.C.2
-
26
-
-
0039148586
-
A volume inequality concerning sections of convex sets
-
M. Meyer, A volume inequality concerning sections of convex sets, Bull. London Math. Soc. 20 (1988), 151-155.
-
(1988)
Bull. London Math. Soc.
, vol.20
, pp. 151-155
-
-
Meyer, M.1
-
27
-
-
0000094884
-
On projections of probability distributions
-
A. Rényi, On projections of probability distributions, Acta Math. Acad. Sci. Hung. 3 (1952), 131-142.
-
(1952)
Acta Math. Acad. Sci. Hung.
, vol.3
, pp. 131-142
-
-
Rényi, A.1
-
28
-
-
0022769010
-
A strong chord property for 4-connected convex digital sets
-
C. Ronse, A strong chord property for 4-connected convex digital sets, Comput. Vision Graphics Image Process. 35 (1986), 259-269.
-
(1986)
Comput. Vision Graphics Image Process
, vol.35
, pp. 259-269
-
-
Ronse, C.1
-
30
-
-
0005784901
-
On two inverse problems in mathematical morphology
-
ed. by E. R. Dougherty, Marcel Dekker, New York
-
M. Schmitt, On two inverse problems in mathematical morphology, in: Mathematical Morphology in Image Processing, ed. by E. R. Dougherty, Marcel Dekker, New York, pp. 151-169.
-
Mathematical Morphology in Image Processing
, pp. 151-169
-
-
Schmitt, M.1
-
32
-
-
23944516979
-
How to minimize the largest shadow of a finite set
-
Wiley Interscience, New York
-
A. J. Schwenk, How to minimize the largest shadow of a finite set, in: Graphs and Applications, Boulder, CO, 1982, Wiley Interscience, New York, 1985, pp. 279-294.
-
(1985)
Graphs and Applications, Boulder, CO
, vol.1982
, pp. 279-294
-
-
Schwenk, A.J.1
-
33
-
-
0042388750
-
How small can the mean shadow of a set be?
-
A. J. Schwenk and J. I. Munro, How small can the mean shadow of a set be?, Amer. Math. Monthly 90 (1983), 325-329.
-
(1983)
Amer. Math. Monthly
, vol.90
, pp. 325-329
-
-
Schwenk, A.J.1
Munro, J.I.2
-
35
-
-
0028388756
-
A partial digest approach to restriction site mapping
-
S.S. Skiena and G. Sundaram, A partial digest approach to restriction site mapping, Bull. Math. Biol. 56 (1994), 275-294.
-
(1994)
Bull. Math. Biol.
, vol.56
, pp. 275-294
-
-
Skiena, S.S.1
Sundaram, G.2
|