-
1
-
-
84966261938
-
Strong primality tests that are not sufficient
-
W. Adams and D. Shanks. Strong primality tests that are not sufficient. Math. Comp., 39(159):255-300, 1982.
-
(1982)
Math. Comp.
, vol.39
, Issue.159
, pp. 255-300
-
-
Adams, W.1
Shanks, D.2
-
2
-
-
85008493985
-
On the difficulty of finding reliable witnesses
-
Springer-Verlag, Berlin
-
W. R. Alford, A. Granville, and C. Pomerance. On the difficulty of finding reliable witnesses. In Algorithmic Number Theory (Ithaca, NY, 1994), pages 1-16. Springer-Verlag, Berlin, 1994.
-
(1994)
Algorithmic Number Theory (Ithaca, NY, 1994)
, pp. 1-16
-
-
Alford, W.R.1
Granville, A.2
Pomerance, C.3
-
3
-
-
84968521991
-
Rabin-Miller primality test: Composite numbers which pass it
-
F. Arnault. Rabin-Miller primality test: composite numbers which pass it. Math. Comp., 64(209): 355-361, 1995.
-
(1995)
Math. Comp.
, vol.64
, Issue.209
, pp. 355-361
-
-
Arnault, F.1
-
4
-
-
84946830825
-
Intelligent primality test offer
-
American Mathematical Society, Providence, RI, 1998
-
A. O. L. Atkin. Intelligent primality test offer. In Computational Perspectives on Number Theory (Chicago, IL, 1995), pages 1-11. American Mathematical Society, Providence, RI, 1998.
-
(1995)
Computational Perspectives on Number Theory Chicago, IL
, pp. 1-11
-
-
Atkin, A.O.L.1
-
5
-
-
84966219173
-
Elliptic curves and primality proving
-
A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp., 61(203):29-68, 1993.
-
(1993)
Math. Comp.
, vol.61
, Issue.203
, pp. 29-68
-
-
Atkin, A.O.L.1
Morain, F.2
-
6
-
-
84966237268
-
Lucas pseudoprimes
-
R. Baillie and S. S. Wagstaff, Jr. Lucas pseudoprimes. Math. Comp., 35(152):1391-1417, 1980.
-
(1980)
Math. Comp.
, vol.35
, Issue.152
, pp. 1391-1417
-
-
Baillie, R.1
Wagstaff Jr., S.S.2
-
7
-
-
0036060570
-
Deterministic primality test for numbers of the form A2 · 3n + 1, n ≥ 3 odd
-
electronic
-
P. Berrizbeitia and B. Iskra. Deterministic primality test for numbers of the form A2 · 3n + 1, n ≥ 3 odd. Proc. Amer. Math. Soc., 130(2):363-365 (electronic), 2002.
-
(2002)
Proc. Amer. Math. Soc.
, vol.130
, Issue.2
, pp. 363-365
-
-
Berrizbeitia, P.1
Iskra, B.2
-
10
-
-
84968518187
-
Primality testing and Jacobi sums
-
H. Cohen and H. W. Lenstra, Jr. Primality testing and Jacobi sums. Math. Comp., 42(165):297-330, 1984.
-
(1984)
Math. Comp.
, vol.42
, Issue.165
, pp. 297-330
-
-
Cohen, H.1
Lenstra Jr., H.W.2
-
13
-
-
84966230027
-
Average case error estimates for the strong probable prime test
-
I. Damgård, P. Landrock, and C. Pomerance. Average case error estimates for the strong probable prime test. Math. Comp., 61(203):177-194, 1993.
-
(1993)
Math. Comp.
, vol.61
, Issue.203
, pp. 177-194
-
-
Damgård, I.1
Landrock, P.2
Pomerance, C.3
-
14
-
-
0001899857
-
A probable prime test with high confidence
-
J. Grantham. A probable prime test with high confidence. J. Number Theory, 72(1):32-47, 1998.
-
(1998)
J. Number Theory
, vol.72
, Issue.1
, pp. 32-47
-
-
Grantham, J.1
-
15
-
-
0004133524
-
-
Springer-Verlag, Berlin. Translated from the Chinese by Peter Shiu
-
L. K. Hua. Introduction to Number Theory. Springer-Verlag, Berlin, 1982. Translated from the Chinese by Peter Shiu.
-
(1982)
Introduction to Number Theory
-
-
Hua, L.K.1
-
16
-
-
84968464823
-
On strong pseudoprimes to several bases
-
G. Jaeschke. On strong pseudoprimes to several bases. Math. Comp., 61(204):915-926, 1993.
-
(1993)
Math. Comp.
, vol.61
, Issue.204
, pp. 915-926
-
-
Jaeschke, G.1
-
17
-
-
0003657590
-
-
second edition. Addison-Wesley, Reading, MA. Addison-Wesley Series in Computer Science and Information Processing
-
D. E. Knuth. The Art of Computer Programming, Vol. 2, second edition. Addison-Wesley, Reading, MA, 1981. Addison-Wesley Series in Computer Science and Information Processing.
-
(1981)
The Art of Computer Programming
, vol.2
-
-
Knuth, D.E.1
-
18
-
-
84966232823
-
Fast primality tests for numbers less than 50 · 109
-
G. C. Kurtz, D. Shanks, and H. C. Williams. Fast primality tests for numbers less than 50 · 109. Math. Comp., 46(174):691-701, 1986.
-
(1986)
Math. Comp.
, vol.46
, Issue.174
, pp. 691-701
-
-
Kurtz, G.C.1
Shanks, D.2
Williams, H.C.3
-
20
-
-
84944878354
-
-
CRC Press, Boca Raton, FL
-
A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, Boca Raton, FL, 1997.
-
(1997)
Handbook of Applied Cryptography
-
-
Menezes, A.J.1
Van Oorschot, P.C.2
Vanstone, S.A.3
-
21
-
-
84966243285
-
Modular multiplication without trial division
-
P. L. Montgomery. Modular multiplication without trial division. Math. Comp., 44(170):519-521, 1985.
-
(1985)
Math. Comp.
, vol.44
, Issue.170
, pp. 519-521
-
-
Montgomery, P.L.1
-
22
-
-
0348132097
-
On strong Lucas pseudoprimes
-
(Klagenfurt, 1997).Heyn,Klagenfurt
-
S. Müller. On strong Lucas pseudoprimes. In Contributions to General Algebra, 10 (Klagenfurt, 1997), pages 237-249. Heyn, Klagenfurt, 1998.
-
(1998)
Contributions to General Algebra
, vol.10
, pp. 237-249
-
-
Müller, S.1
-
23
-
-
34948815890
-
On the combined Fermat/Lucas probable prime test
-
Springer-Verlag, Berlin
-
S. Müller. On the combined Fermat/Lucas probable prime test. In Cryptography and Coding, pages 222-235. Springer-Verlag, Berlin, 1999.
-
(1999)
Cryptography and Coding
, pp. 222-235
-
-
Müller, S.1
-
24
-
-
84946848315
-
On probable prime testing and the computation of square roots mod n
-
Springer-Verlag, Berlin, 2000
-
S. Müller. On probable prime testing and the computation of square roots mod n. In Algorithmic Number Theory (Leiden, 2000), pages 423-437. Springer-Verlag, Berlin, 2000.
-
(2000)
Algorithmic Number Theory Leiden
, pp. 423-437
-
-
Müller, S.1
-
27
-
-
33645436296
-
A probable prime test with very high confidence for n = 1 mod 4
-
Springer-Verlag, Berlin
-
S. Müller. A probable prime test with very high confidence for n = 1 mod 4. In Advances in Cryptology - ASIACRYPT '01. Springer-Verlag, Berlin, 2001.
-
(2001)
Advances in Cryptology - ASIACRYPT '01
-
-
Müller, S.1
-
28
-
-
33645438261
-
Some remarks on primality testing based on Lucas functions
-
A K Peters, Boston, MA
-
S. Müller. Some remarks on primality testing based on Lucas functions. In Number Theory for the Millennium, Vol. 3, pages 1-22. A K Peters, Boston, MA, 2001.
-
(2001)
Number Theory for the Millennium
, vol.3
, pp. 1-22
-
-
Müller, S.1
-
31
-
-
84966228376
-
The pseudoprimes to 25 · 109
-
C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr. The pseudoprimes to 25 · 109. Math. Comp., 35(151):1003-1026, 1980.
-
(1980)
Math. Comp.
, vol.35
, Issue.151
, pp. 1003-1026
-
-
Pomerance, C.1
Selfridge, J.L.2
Wagstaff Jr., S.S.3
-
32
-
-
0347502146
-
Fast evaluation of Dickson polynomials
-
Hölder-Pichler-Tempsky, Vienna
-
H. Postl. Fast evaluation of Dickson polynomials. In Contributions to General Algebra, 6, pages 223-225. Hölder-Pichler-Tempsky, Vienna, 1988.
-
(1988)
Contributions to General Algebra
, vol.6
, pp. 223-225
-
-
Postl, H.1
-
35
-
-
0013492635
-
On Lucas d-pseudoprimes
-
Graz, Kluwer, Dordrecht, 1998
-
L. Somer. On Lucas d-pseudoprimes. In Applications of Fibonacci Numbers, Vol. 7 (Graz, 1996), pages 369-375. Kluwer, Dordrecht, 1998.
-
(1996)
Applications of Fibonacci Numbers
, vol.7
, pp. 369-375
-
-
Somer, L.1
|