메뉴 건너뛰기




Volumn 42, Issue 2, 2005, Pages 334-345

Compound poisson limits for household epidemics

Author keywords

Compound Poisson convergence; Epidemic model; Household

Indexed keywords


EID: 23944460027     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1239/jap/1118777174     Document Type: Article
Times cited : (3)

References (13)
  • 1
    • 0001373770 scopus 로고    scopus 로고
    • Epidemic models and social networks
    • ANDERSSON, H. (1999). Epidemic models and social networks. Math. Scientist 24, 128-147.
    • (1999) Math. Scientist , vol.24 , pp. 128-147
    • Andersson, H.1
  • 2
    • 0000943691 scopus 로고
    • A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models
    • BALL, F. G. (1986). A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. Adv. Appl. Prob. 18, 289-310.
    • (1986) Adv. Appl. Prob. , vol.18 , pp. 289-310
    • Ball, F.G.1
  • 3
    • 0001481954 scopus 로고    scopus 로고
    • Threshold behaviour in stochastic epidemics among households
    • (Lecture Notes Statist. 114), Applied Probability, eds C. C. Heyde, Y. V. Prohorov, R. Pyke and S. T. Rachev, Springer, New York
    • BALL, F. G. (1996). Threshold behaviour in stochastic epidemics among households. In Athens Conference on Applied Probability and Time Series (Lecture Notes Statist. 114), Vol. 1, Applied Probability, eds C. C. Heyde, Y. V. Prohorov, R. Pyke and S. T. Rachev, Springer, New York, pp. 253-266.
    • (1996) Athens Conference on Applied Probability and Time Series , vol.1 , pp. 253-266
    • Ball, F.G.1
  • 4
    • 0000565682 scopus 로고
    • Poisson approximation for some epidemic models
    • BALL, F. G. AND BARBOUR, A. D. (1990). Poisson approximation for some epidemic models. J. Appl. Prob. 27, 479-490.
    • (1990) J. Appl. Prob. , vol.27 , pp. 479-490
    • Ball, F.G.1    Barbour, A.D.2
  • 6
    • 2142712699 scopus 로고    scopus 로고
    • Poisson approximations for epidemics with two levels of mixing
    • BALL, F. G. AND NEAL, P. J. (2004). Poisson approximations for epidemics with two levels of mixing. Ann. Prob. 32, 1168-1200.
    • (2004) Ann. Prob. , vol.32 , pp. 1168-1200
    • Ball, F.G.1    Neal, P.J.2
  • 7
    • 0029054589 scopus 로고
    • The effect of the household distribution on transmission and control of highly infectious diseases
    • BECKER, N. G. AND DIETZ, K. (1995). The effect of the household distribution on transmission and control of highly infectious diseases. Math. Biosci. 127, 207-219.
    • (1995) Math. Biosci. , vol.127 , pp. 207-219
    • Becker, N.G.1    Dietz, K.2
  • 10
    • 0001107279 scopus 로고
    • Poisson approximation for the final state of a generalised epidemic process
    • LEFÈVRE, C. AND UTEV, S. (1995). Poisson approximation for the final state of a generalised epidemic process. Ann. Prob. 23, 1139-1162.
    • (1995) Ann. Prob. , vol.23 , pp. 1139-1162
    • Lefèvre, C.1    Utev, S.2
  • 11
    • 23944521713 scopus 로고    scopus 로고
    • Asymptotic behaviour of the final state of the generalised epidemic process
    • LEFÈVRE, C. AND UTEV, S. (1996). Asymptotic behaviour of the final state of the generalised epidemic process. Siberian Math. J. 37, 753-763.
    • (1996) Siberian Math. J. , vol.37 , pp. 753-763
    • Lefèvre, C.1    Utev, S.2
  • 12
    • 0031235912 scopus 로고    scopus 로고
    • Mixed Poisson approximation in the collective epidemic model
    • LEFÈVRE, C. AND UTEV, S. (1997). Mixed Poisson approximation in the collective epidemic model. Stoch. Process. Appl. 69, 217-246.
    • (1997) Stoch. Process. Appl. , vol.69 , pp. 217-246
    • Lefèvre, C.1    Utev, S.2
  • 13
    • 0000045988 scopus 로고
    • On the asymptotic distribution of the size of a stochastic epidemic
    • SELLKE, T. (1983). On the asymptotic distribution of the size of a stochastic epidemic. J. Appl. Prob. 20, 390-394.
    • (1983) J. Appl. Prob. , vol.20 , pp. 390-394
    • Sellke, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.