-
1
-
-
0004586188
-
Optimal state-determination by mutually unbiased measurements
-
W. K. Wootters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Phys. 191, 363 (1989).
-
(1989)
Ann. Phys.
, vol.191
, pp. 363
-
-
Wootters, W.K.1
Fields, B.D.2
-
2
-
-
36149039233
-
Geometrical description of quantal state determination
-
I. D. Ivanović, Geometrical description of quantal state determination, J. Phys. A 14, 3241 (1981).
-
(1981)
J. Phys. A
, vol.14
, pp. 3241
-
-
Ivanović, I.D.1
-
7
-
-
33744505701
-
A Wigner-function formulation of finite-state quantum mechanics
-
W. K. Wootters, A Wigner-function formulation of finite-state quantum mechanics, Ann. Phys. 176, 1 (1987).
-
(1987)
Ann. Phys.
, vol.176
, pp. 1
-
-
Wootters, W.K.1
-
12
-
-
0142198849
-
Hubert-Schmidt volume of the set of mixed quantum states
-
K. Zyczkowski and H.-J. Sommers, Hubert-Schmidt volume of the set of mixed quantum states, J. Phys. A 36, 10115 (2003).
-
(2003)
J. Phys. A
, vol.36
, pp. 10115
-
-
Zyczkowski, K.1
Sommers, H.-J.2
-
13
-
-
0002940114
-
Extremum problems with inequalities as subsidiary conditions
-
(Jan. 8, 1948), Interscience, New York
-
F. John, Extremum problems with inequalities as subsidiary conditions, in: Studies and essays presented to R. Courant on his 60th birthday, (Jan. 8, 1948), Interscience, New York, 1948, pp. 187-204.
-
(1948)
Studies and Essays Presented to R. Courant on his 60th Birthday
, pp. 187-204
-
-
John, F.1
-
14
-
-
0141693771
-
An elementary introduction to modern convex geometry
-
S. Levy, ed., Cambridge University Press
-
See also K. Ball, An elementary introduction to modern convex geometry, in: Flavors of Geometry, S. Levy, ed., Cambridge University Press, 1997, p. 1.
-
(1997)
Flavors of Geometry
, pp. 1
-
-
Ball, K.1
-
15
-
-
0000468604
-
Geometry of density matrices I
-
J. E. Harriman, Geometry of density matrices I, Phys. Rev. A 17, 1249 (1978).
-
(1978)
Phys. Rev. A
, vol.17
, pp. 1249
-
-
Harriman, J.E.1
-
16
-
-
2942657646
-
Symmetric informationally complete quantum measurements
-
J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys. 45, 2171 (2004).
-
(2004)
J. Math. Phys.
, vol.45
, pp. 2171
-
-
Renes, J.M.1
Blume-Kohout, R.2
Scott, A.J.3
Caves, C.M.4
-
18
-
-
0036508851
-
Mutually unbiased binary observable sets on N qubits
-
J. Lawrence, Č. Brukner, and A. Zeilinger, Mutually unbiased binary observable sets on N qubits, Phys. Rev. A 65, 032320 (2002).
-
(2002)
Phys. Rev. A
, vol.65
, pp. 032320
-
-
Lawrence, J.1
Brukner, Č.2
Zeilinger, A.3
-
19
-
-
0141991892
-
A new proof of the existence of mutually orthogonal bases
-
S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, A new proof of the existence of mutually orthogonal bases, Algorithmica 34, 512 (2002).
-
(2002)
Algorithmica
, vol.34
, pp. 512
-
-
Bandyopadhyay, S.1
Boykin, P.O.2
Roychowdhury, V.3
Vatan, F.4
-
21
-
-
21244467626
-
-
quant-ph/0401046
-
T. Durt, If1 = 2⊕3, then 1 = 2⊙3: Bell states, finite groups, and mutually unbiased bases, a unifying approach, quant-ph/0401046.
-
If1 = 2⊕3, then 1 = 2⊙3: Bell States, Finite Groups, and Mutually Unbiased Bases, a Unifying Approach
-
-
Durt, T.1
-
22
-
-
4644357763
-
Mutually unbiased bases and finite projective planes
-
M. Saniga, M. Planat, and H. Rosu, Mutually Unbiased Bases and finite projective planes, J. Opt. B 6, L19 (2004).
-
(2004)
J. Opt. B
, vol.6
-
-
Saniga, M.1
Planat, M.2
Rosu, H.3
|