메뉴 건너뛰기




Volumn 29, Issue 1, 2005, Pages 3-12

Computational intelligence in data mining

Author keywords

Computational Intelligence; Fuzzy Classifier System Rule Base Reduction; KDD; Soft Computing; Visualization

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; DATA MINING; EXPERT SYSTEMS; INFORMATION ANALYSIS; MANAGEMENT INFORMATION SYSTEMS;

EID: 23844513842     PISSN: 03505596     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (31)

References (45)
  • 3
    • 0002524511 scopus 로고    scopus 로고
    • Roles of soft computing and fuzzy logic in the conception, design and deployment of information/intelligent systems
    • O. Kaynak et al. (Eds.), Springer Verlag, Germany
    • L. Zadeh, Roles of soft computing and fuzzy logic in the conception, design and deployment of information/intelligent systems, in: Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications, O. Kaynak et al. (Eds.), Springer Verlag, Germany, pp. 1-9, 1998.
    • (1998) Computational Intelligence: Soft Computing and Fuzzy-neuro Integration with Applications , pp. 1-9
    • Zadeh, L.1
  • 4
    • 23844458149 scopus 로고    scopus 로고
    • Intelligent systems: Architectures and perspectives, Recent Advances in Intelligent Paradigms and Applications
    • Abraham A., Jain L. and Kacprzyk J. (Eds.), Springer Verlag Germany, ISBN 3790815381, Chapter 1
    • A. Abraham, Intelligent systems: Architectures and perspectives, Recent Advances in Intelligent Paradigms and Applications, Abraham A., Jain L. and Kacprzyk J. (Eds.), Studies in Fuzziness and Soft Computing, Springer Verlag Germany, ISBN 3790815381, Chapter 1, pp. 1-35.
    • Studies in Fuzziness and Soft Computing , pp. 1-35
    • Abraham, A.1
  • 8
    • 0034175342 scopus 로고    scopus 로고
    • Hybrid fuzzy convolution modelling and identification of chemical process systems
    • J. Abonyi, L. Nagy, F. Szeifert, Hybrid fuzzy convolution modelling and identification of chemical process systems, International Journal of Systems Science 31 (2000) 457-66.
    • (2000) International Journal of Systems Science , vol.31 , pp. 457-466
    • Abonyi, J.1    Nagy, L.2    Szeifert, F.3
  • 10
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • J. Mao, K. Jain, Artificial neural networks for feature extraction and multivariate data projection, IEEE Trans. on Neural Networks 6(2) (1995) 296-317.
    • (1995) IEEE Trans. on Neural Networks , vol.6 , Issue.2 , pp. 296-317
    • Mao, J.1    Jain, K.2
  • 13
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • A. A. S. Chebrolu, J. Thomas, Feature deduction and ensemble design of intrusion detection systems, Computers and Security 〈http://dx.doi.org/10. 1016/j.cose.2004.09.008〉
    • Computers and Security
    • Chebrolu, A.A.S.1    Thomas, J.2
  • 14
    • 21244438033 scopus 로고    scopus 로고
    • Time series forecasting using flexible neural tree model
    • J. D. Y. Chen, B. Yang, A. Abraham, Time series forecasting using flexible neural tree model, Information Sciences 〈http://dx.doi.org/10. 1016/j.ins.2004.10.005〉.
    • Information Sciences
    • Chen, J.D.Y.1    Yang, B.2    Abraham, A.3
  • 15
    • 0032713743 scopus 로고    scopus 로고
    • Semantic constraints for membership function optimization
    • J. V. de Oliveira, Semantic constraints for membership function optimization, IEEE Trans. FS 19 (1999) 128-138.
    • (1999) IEEE Trans. , vol.FS 19 , pp. 128-138
    • De Oliveira, J.V.1
  • 17
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • R. Setiono, Generating concise and accurate classification rules for breast cancer diagnosis, Artificial Intelligence in Medicine 18 (2000) 205-219.
    • (2000) Artificial Intelligence in Medicine , vol.18 , pp. 205-219
    • Setiono, R.1
  • 18
    • 0742306458 scopus 로고    scopus 로고
    • Meta-learning evolutionary artificial neural networks
    • Elsevier Science, Netherlands
    • A. Abraham, Meta-learning evolutionary artificial neural networks, Neurocomputing, Elsevier Science, Netherlands, Vol. 56c, pp. 1-38.
    • Neurocomputing , vol.56 C , pp. 1-38
    • Abraham, A.1
  • 19
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • D. Nauck, R. Kruse, Obtaining interpretable fuzzy classification rules from medical data, Artificial Intelligence in Medicine 16 (1999) 149-169.
    • (1999) Artificial Intelligence in Medicine , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 20
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
    • H. Ishibuchi, T. Nakashima, T. Murata, Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems, IEEE Trans. SMC-B 29 (1999) 601-618.
    • (1999) IEEE Trans. , vol.SMC-B 29 , pp. 601-618
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 21
    • 0036911577 scopus 로고    scopus 로고
    • Evonf: A framework for optimization of fuzzy inference systems using neural network learning and evolutionary computation
    • IEEE Press, ISBN 0780376218, Canada
    • A. Abraham, Evonf: A framework for optimization of fuzzy inference systems using neural network learning and evolutionary computation, in: The 17th IEEE International Symposium on Intelligent Control, ISIC'02, IEEE Press, ISBN 0780376218, pp. 327-332, Canada, 2002.
    • (2002) The 17th IEEE International Symposium on Intelligent Control, ISIC'02 , pp. 327-332
    • Abraham, A.1
  • 22
    • 33645256979 scopus 로고    scopus 로고
    • Rule-based modeling: Precision and transparency
    • in press
    • M. Seines, J. Roubos, Rule-based modeling: Precision and transparency, IEEE Trans. FS. in press.
    • IEEE Trans. FS
    • Seines, M.1    Roubos, J.2
  • 23
    • 0038537288 scopus 로고    scopus 로고
    • I-miner: A web usage mining framework using hierarchical intelligent systems
    • FUZZ-IEEE'03, IEEE Press, ISBN 0780378113, USA
    • A. Abraham, i-miner: A web usage mining framework using hierarchical intelligent systems, in: The IEEE International Conference on Fuzzy Systems, FUZZ-IEEE'03, IEEE Press, ISBN 0780378113, pp. 1129-1134, USA, 2003.
    • (2003) The IEEE International Conference on Fuzzy Systems , pp. 1129-1134
    • Abraham, A.1
  • 24
    • 0025508354 scopus 로고
    • Entropy nets: From decision trees to neural networks
    • L. Sethi., Entropy nets: From decision trees to neural networks, Proc. IEEE 78 (1990) 1605-1613.
    • (1990) Proc. IEEE , vol.78 , pp. 1605-1613
    • Sethi, L.1
  • 25
    • 0029483035 scopus 로고
    • Initialization of neural networks by means of decision trees
    • I. Ivanova, M. Kubat, Initialization of neural networks by means of decision trees, Knowledge-Based Systems 8 (1995) 333-344.
    • (1995) Knowledge-based Systems , vol.8 , pp. 333-344
    • Ivanova, I.1    Kubat, M.2
  • 26
    • 0032593208 scopus 로고    scopus 로고
    • On mapping decision trees and neural networks
    • R. Setiono, W. Leow, On mapping decision trees and neural networks, Knowledge Based Systems 13 (1999) 95-99.
    • (1999) Knowledge Based Systems , vol.13 , pp. 95-99
    • Setiono, R.1    Leow, W.2
  • 27
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference systems
    • J.-S. Jang, C.-T. Sun, Functional equivalence between radial basis function networks and fuzzy inference systems, IEEE Trans. NN 4 (1993) 156-159.
    • (1993) IEEE Trans. , vol.NN 4 , pp. 156-159
    • Jang, J.-S.1    Sun, C.-T.2
  • 29
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen, The self-organizing map, Proceedings of the IEEE 78(9) (1990) 1464-1480.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 30
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • J. Abonyi, F. Szeifert, Supervised fuzzy clustering for the identification of fuzzy classifiers, Pattern Recognition Letters 24(14) (2003) 2195-2207.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.14 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 31
    • 0032094918 scopus 로고    scopus 로고
    • Similarity measures in fuzzy rule base simplification
    • M. Setnes, R. Babuška, U. Kaymak, H. van Nauta Lemke, Similarity measures in fuzzy rule base simplification, IEEE Trans. SMC-B 28 (1998) 376-386.
    • (1998) IEEE Trans. , vol.SMC-B 28 , pp. 376-386
    • Setnes, M.1    Babuška, R.2    Kaymak, U.3    Van Nauta Lemke, H.4
  • 32
    • 0032591469 scopus 로고    scopus 로고
    • Transparent fuzzy modeling using fuzzy clustering and GA's
    • New York, USA
    • M. Setnes, J. Roubos, Transparent fuzzy modeling using fuzzy clustering and GA's, in: In NAFIPS, New York, USA, 1999, pp. 198-202.
    • (1999) In NAFIPS , pp. 198-202
    • Setnes, M.1    Roubos, J.2
  • 33
    • 0033704206 scopus 로고    scopus 로고
    • Compact fuzzy models through complexity reduclion and evolutionary optimization
    • San Antonio, USA
    • J. Roubos, M. Setnes, Compact fuzzy models through complexity reduclion and evolutionary optimization, in: Proc. of IEEE international conference on fuzzy systems, San Antonio, USA, 2000, pp. 762-767.
    • (2000) Proc. of IEEE International Conference on Fuzzy Systems , pp. 762-767
    • Roubos, J.1    Setnes, M.2
  • 34
    • 0033115927 scopus 로고    scopus 로고
    • Reduclion of fuzzy rule base via singular value decomposition
    • Y. Yam, P. Baranyi, C. Yang, Reduclion of fuzzy rule base via singular value decomposition, IEEE Trans. Fuzzy Systems 7(2) (1999) 120-132.
    • (1999) IEEE Trans. Fuzzy Systems , vol.7 , Issue.2 , pp. 120-132
    • Yam, Y.1    Baranyi, P.2    Yang, C.3
  • 35
    • 0033078615 scopus 로고    scopus 로고
    • Simplifying fuzzy rule-based models using orthogonal transformation methods
    • J. Yen, L. Wang., Simplifying fuzzy rule-based models using orthogonal transformation methods, IEEE Trans. SMC-B 29 (1999) 13-24.
    • (1999) IEEE Trans. , vol.SMC-B 29 , pp. 13-24
    • Yen, J.1    Wang, L.2
  • 39
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems
    • Y. Jin, Fuzzy modeling of high-dimensional systems, IEEE Trans. FS 8 (2000) 212-221.
    • (2000) IEEE Trans. , vol.FS 8 , pp. 212-221
    • Jin, Y.1
  • 41
    • 0036435523 scopus 로고    scopus 로고
    • Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision tree initialization
    • Jan
    • J. Abonyi, H. Roubos, F. Szeifert, Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision tree initialization, International Journal of Approximate Reasoning Jan (2003) 1-21.
    • (2003) International Journal of Approximate Reasoning , pp. 1-21
    • Abonyi, J.1    Roubos, H.2    Szeifert, F.3
  • 45
    • 0028582717 scopus 로고
    • Using real-valued genetic algorithms to evolve rule sets for classification
    • Orlando, USA
    • A. Corcoran, S. Sen, Using real-valued genetic algorithms to evolve rule sets for classification, in: IEEECEC, Orlando, USA, 1994, pp. 120-124.
    • (1994) IEEECEC , pp. 120-124
    • Corcoran, A.1    Sen, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.