-
1
-
-
5644224269
-
Asymptotic and oscillatory properties of linear stochastic delay differential equations with vanishing delay
-
J. A. D. Appleby and C. Kelly. Asymptotic and oscillatory properties of linear stochastic delay differential equations with vanishing delay. Fund. Differ. Eqn., 11(3-4):235-265, 2004.
-
(2004)
Fund. Differ. Eqn.
, vol.11
, Issue.3-4
, pp. 235-265
-
-
Appleby, J.A.D.1
Kelly, C.2
-
2
-
-
5644247612
-
Oscillation and non-oscillation in solutions of nonlinear stochastic delay differential equations
-
J. A. D. Appleby and C. Kelly. Oscillation and non-oscillation in solutions of nonlinear stochastic delay differential equations. Electron. Comm. Probab., 9:106-118, 2004.
-
(2004)
Electron. Comm. Probab.
, vol.9
, pp. 106-118
-
-
Appleby, J.A.D.1
Kelly, C.2
-
3
-
-
0031997110
-
Stability of epidemic model with time delays influenced by stochastic perturbations
-
E. Beretta, V. B. Kolmanovskii, and L. Shaikhet. Stability of epidemic model with time delays influenced by stochastic perturbations. Math. Comput. Simulation, 45(3-4):269-277, 1998.
-
(1998)
Math. Comput. Simulation
, vol.45
, Issue.3-4
, pp. 269-277
-
-
Beretta, E.1
Kolmanovskii, V.B.2
Shaikhet, L.3
-
4
-
-
0034509077
-
Numerical modelling in biosciences using delay differential equations
-
G. A. Bocharov and F. A. Rihan. Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math., 125(1-2):183-199, 2000.
-
(2000)
J. Comput. Appl. Math.
, vol.125
, Issue.1-2
, pp. 183-199
-
-
Bocharov, G.A.1
Rihan, F.A.2
-
6
-
-
0040368224
-
The European option with hereditary price structures: Basic theory
-
M-H. Chang and R. K. Youree. The European option with hereditary price structures: Basic theory. Appl. Math. Comp., 102:279-296, 1999.
-
(1999)
Appl. Math. Comp.
, vol.102
, pp. 279-296
-
-
Chang, M.-H.1
Youree, R.K.2
-
10
-
-
4944242971
-
On oscillations of the geometric Brownian motion with time delayed drift
-
A. A. Gushchin and U. Küchler. On oscillations of the geometric Brownian motion with time delayed drift. Statist. Probab. Lett., 70(1): 19-24, 2004.
-
(2004)
Statist. Probab. Lett.
, vol.70
, Issue.1
, pp. 19-24
-
-
Gushchin, A.A.1
Küchler, U.2
-
11
-
-
0010712076
-
Invariant cones of positive initial functions for delay differential equations
-
I. Györi. Invariant cones of positive initial functions for delay differential equations. Appl. Anal., 35(1-4):21-41, 1990.
-
(1990)
Appl. Anal.
, vol.35
, Issue.1-4
, pp. 21-41
-
-
Györi, I.1
-
13
-
-
0032221561
-
Complete models with stochastic volatility
-
D. G. Hobson and L. C. G. Rogers. Complete models with stochastic volatility. Math. Finance, 8(1):27-48, 1998.
-
(1998)
Math. Finance
, vol.8
, Issue.1
, pp. 27-48
-
-
Hobson, D.G.1
Rogers, L.C.G.2
-
14
-
-
0002447873
-
On stationary solutions of a stochastic differential equation
-
K. Itô and M. Nisio. On stationary solutions of a stochastic differential equation. J. Math. Kyoto Univ., 4:1-75, 1964.
-
(1964)
J. Math. Kyoto Univ.
, vol.4
, pp. 1-75
-
-
Itô, K.1
Nisio, M.2
-
15
-
-
0347933358
-
Capsize criteria for ship models with memory-dependent hydrodynamics and random excitation
-
C. Jiang, A. W. Troesch, and S. W. Shaw. Capsize criteria for ship models with memory-dependent hydrodynamics and random excitation. Phil. Trans. R. Soc. Lond. A, 358:1761-1791, 2000.
-
(2000)
Phil. Trans. R. Soc. Lond. A
, vol.358
, pp. 1761-1791
-
-
Jiang, C.1
Troesch, A.W.2
Shaw, S.W.3
-
17
-
-
0011398161
-
Asymptotic behavior of solutions of the functional differential equation y′(z) = ay(λx) + by(x)
-
K. Schmitt, editor. Academic Press
-
T. Kato. Asymptotic behavior of solutions of the functional differential equation y′(z) = ay(λx) + by(x). In K. Schmitt, editor, Delay and Functional Differential Equations and their Applications, pages 197-217. Academic Press, 1972.
-
(1972)
Delay and Functional Differential Equations and Their Applications
, pp. 197-217
-
-
Kato, T.1
-
19
-
-
0001480435
-
Oscillatory and monotone solutions of differential equations of first order with deviating argument
-
R.G. Koplatadze and T.A. Chanturiya. Oscillatory and monotone solutions of differential equations of first order with deviating argument. Differ. Uravn., 18:1463-1465, 1982.
-
(1982)
Differ. Uravn.
, vol.18
, pp. 1463-1465
-
-
Koplatadze, R.G.1
Chanturiya, T.A.2
-
21
-
-
84916154144
-
Sharp conditions for oscillations caused by delays
-
G. Ladas. Sharp conditions for oscillations caused by delays. Appl. Anal., 9:93-98, 1979.
-
(1979)
Appl. Anal.
, vol.9
, pp. 93-98
-
-
Ladas, G.1
-
22
-
-
0002170513
-
Oscillations of higher-order retarded differential equations generated by the retarded argument
-
K. Schmitt, editor. Academic Press
-
G. Ladas, V. Lakshmikantham, and J. S. Papadakis. Oscillations of higher-order retarded differential equations generated by the retarded argument. In K. Schmitt, editor, Delay and Functional Differential Equations and their Applications, pages 219-231. Academic Press, 1972.
-
(1972)
Delay and Functional Differential Equations and Their Applications
, pp. 219-231
-
-
Ladas, G.1
Lakshmikantham, V.2
Papadakis, J.S.3
-
25
-
-
23844473369
-
Oscillations caused by retarded perturbations of first order linear ordinary differential equations
-
G.S. Ladde. Oscillations caused by retarded perturbations of first order linear ordinary differential equations. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., 63:351-359, 1977.
-
(1977)
Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat.
, vol.63
, pp. 351-359
-
-
Ladde, G.S.1
-
26
-
-
0018481168
-
Stability and oscillations in single-species processes with past memory
-
G.S. Ladde. Stability and oscillations in single-species processes with past memory. Int. J. Syst. Sci., 10:621-647, 1979.
-
(1979)
Int. J. Syst. Sci.
, vol.10
, pp. 621-647
-
-
Ladde, G.S.1
-
27
-
-
23844473841
-
Conjugation of flows for stochastic and random functional differential equations
-
H. Lisei. Conjugation of flows for stochastic and random functional differential equations. Stochastics and Dynamics, 1(2):283-298, 2001.
-
(2001)
Stochastics and Dynamics
, vol.1
, Issue.2
, pp. 283-298
-
-
Lisei, H.1
-
30
-
-
0036680181
-
Numerical investigation of noise-induced resonance in a semiconductor laser with optical feedback
-
C. Masoller. Numerical investigation of noise-induced resonance in a semiconductor laser with optical feedback. Physica D, 168-169:171-176, 2002.
-
(2002)
Physica D
, vol.168-169
, pp. 171-176
-
-
Masoller, C.1
-
32
-
-
0000629454
-
Linear homogenous differential equations of first order with deviating arguments
-
A. D. Myshkis. Linear homogenous differential equations of first order with deviating arguments. Uspekhi Mat. Nauk, 5:160-162, 1950.
-
(1950)
Uspekhi Mat. Nauk
, vol.5
, pp. 160-162
-
-
Myshkis, A.D.1
-
33
-
-
0011067564
-
Stability in probability of nonlinear stochastic hereditary systems
-
L. Shaikhet. Stability in probability of nonlinear stochastic hereditary systems. Dyn. Syst. Appl., 4(2):199-204, 1995.
-
(1995)
Dyn. Syst. Appl.
, vol.4
, Issue.2
, pp. 199-204
-
-
Shaikhet, L.1
-
34
-
-
84968484343
-
Oscillation in first order nonlinear retarded argument differential equations
-
W. E. Shreve. Oscillation in first order nonlinear retarded argument differential equations. Proc. Am. Math. Soc., 41:565-568, 1973.
-
(1973)
Proc. Am. Math. Soc.
, vol.41
, pp. 565-568
-
-
Shreve, W.E.1
-
35
-
-
84976111283
-
Bounded oscillations under the effect of retardations for differential equations of arbitrary order
-
V.A. Staikos and I.P. Stavroulakis. Bounded oscillations under the effect of retardations for differential equations of arbitrary order. Proc. Roy. Soc. Edin., 77:129-136, 1977.
-
(1977)
Proc. Roy. Soc. Edin.
, vol.77
, pp. 129-136
-
-
Staikos, V.A.1
Stavroulakis, I.P.2
-
36
-
-
23844452145
-
Oscillation criteria for delay, difference and functional equations
-
I.P. Stavroulakis. Oscillation criteria for delay, difference and functional equations. Funct. Differ. Equ., 11(1-2):163-183, 2004.
-
(2004)
Funct. Differ. Equ.
, vol.11
, Issue.1-2
, pp. 163-183
-
-
Stavroulakis, I.P.1
|