메뉴 건너뛰기




Volumn 166, Issue 3, 2005, Pages 387-391

Parameter identification by neural network for intelligent deep drawing of axisymmetric workpieces

Author keywords

Intelligent deep drawing; LM algorithm; Neural network; Parameter identification

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; IDENTIFICATION (CONTROL SYSTEMS); INTELLIGENT CONTROL; NEURAL NETWORKS; SHEET METAL;

EID: 23844464874     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2004.08.020     Document Type: Article
Times cited : (42)

References (22)
  • 1
    • 85024578156 scopus 로고
    • Real time identification of workpiece material characteristics from measurements during brakeforming
    • A. Stelson Real time identification of workpiece material characteristics from measurements during brakeforming ASME J. Eng. Ind. 105 1983 45 53
    • (1983) ASME J. Eng. Ind. , vol.105 , pp. 45-53
    • Stelson, A.1
  • 2
    • 0023401570 scopus 로고
    • Real-time identification and control of springback in sheet metal forming
    • A. Chandra Real-time identification and control of springback in sheet metal forming ASME J. Eng. Ind. 109 1987 265 273
    • (1987) ASME J. Eng. Ind. , vol.109 , pp. 265-273
    • Chandra, A.1
  • 3
    • 10044232602 scopus 로고
    • Adaptive control method of deep drawing using the variable blank holding force technique
    • K.-I. Manabe, and K. Soeda Adaptive control method of deep drawing using the variable blank holding force technique J. Jpn. Soc. Technol. Plast. 33 1992 423 428
    • (1992) J. Jpn. Soc. Technol. Plast. , vol.33 , pp. 423-428
    • Manabe, K.-I.1    Soeda, K.2
  • 4
    • 0037678739 scopus 로고
    • Fuzzy controlled variable blank holding force technique for circular cup deep drawing of aluminum alloy sheet
    • K. Manabe, et al., Fuzzy controlled variable blank holding force technique for circular cup deep drawing of aluminum alloy sheet, in: Proceedings of NAMRC No.MF95-121 (1995) 41-46.
    • (1995) Proceedings of NAMRC No.MF95-121 , vol.MF95-121 , pp. 41-46
    • Manabe, K.1
  • 5
    • 4344596735 scopus 로고    scopus 로고
    • Critical flange wrinkle condition in intelligent control of the deep drawing process
    • J. Zhao Critical flange wrinkle condition in intelligent control of the deep drawing process J. Yanshan Univ. 22 3 1998 197 201
    • (1998) J. Yanshan Univ. , vol.22 , Issue.3 , pp. 197-201
    • Zhao, J.1
  • 6
    • 4344590455 scopus 로고    scopus 로고
    • The critical condition for the side-wall rupture in the intelligent control of deep drawing
    • J. Zhao The critical condition for the side-wall rupture in the intelligent control of deep drawing J. Yanshan Univ. 24 4 2000 330 337
    • (2000) J. Yanshan Univ. , vol.24 , Issue.4 , pp. 330-337
    • Zhao, J.1
  • 8
    • 0034559517 scopus 로고    scopus 로고
    • On the prediction of side-wall wrinkling in sheet metal forming processes
    • W. Xi, and C. Jian On the prediction of side-wall wrinkling in sheet metal forming processes Int. J. Mech. Sci. 42 2000 2369 2394
    • (2000) Int. J. Mech. Sci. , vol.42 , pp. 2369-2394
    • Xi, W.1    Jian, C.2
  • 10
    • 0038428612 scopus 로고    scopus 로고
    • Analytic description of the intelligent deep drawing process for axisymmetric-curved workpieces
    • J. Zhao Analytic description of the intelligent deep drawing process for axisymmetric-curved workpieces J. Plast. Eng. 5 4 1998 47 58
    • (1998) J. Plast. Eng. , vol.5 , Issue.4 , pp. 47-58
    • Zhao, J.1
  • 11
    • 0005369619 scopus 로고    scopus 로고
    • Artificial intelligence identification of process parameter and adaptive control system for deep drawing process
    • K. Manabe, M. Yang, and S. Yoshihara Artificial intelligence identification of process parameter and adaptive control system for deep drawing process J. Mater. Processing Technol. 80/81 1998 421 426
    • (1998) J. Mater. Processing Technol. , vol.80-81 , pp. 421-426
    • Manabe, K.1    Yang, M.2    Yoshihara, S.3
  • 12
    • 0035362122 scopus 로고    scopus 로고
    • ANN-based real-time identification of material properties and friction coefficient
    • J. Zhao ANN-based real-time identification of material properties and friction coefficient J. Plast. Eng. 8 2 2001 36 39
    • (2001) J. Plast. Eng. , vol.8 , Issue.2 , pp. 36-39
    • Zhao, J.1
  • 13
    • 4344658099 scopus 로고    scopus 로고
    • Intelligent deep drawing system for conical part, latest development on press forming
    • Chinese Mechanical Engineering Society
    • J. Zhao, et al., Intelligent deep drawing system for conical part, Latest development on press forming, Fifth Annual Academic Meeting on Press of the Forging and Stamping Academe, Chinese Mechanical Engineering Society, 1998, pp. 3-6.
    • (1998) Fifth Annual Academic Meeting on Press of the Forging and Stamping Academe , pp. 3-6
    • Zhao, J.1
  • 14
    • 0033615122 scopus 로고    scopus 로고
    • A new concept for the description of surface friction phenomena
    • E. Doege A new concept for the description of surface friction phenomena J. Mater. Processing Technol. 94 1999 189 192
    • (1999) J. Mater. Processing Technol. , vol.94 , pp. 189-192
    • Doege, E.1
  • 15
    • 0035439184 scopus 로고    scopus 로고
    • On-line identification of material parameters and friction coefficient during intelligent control of conical workpiece deep drawing
    • J. Zhao On-line identification of material parameters and friction coefficient during intelligent control of conical workpiece deep drawing J. Plast. Eng. 8 3 2001 48 52
    • (2001) J. Plast. Eng. , vol.8 , Issue.3 , pp. 48-52
    • Zhao, J.1
  • 16
    • 33645269882 scopus 로고    scopus 로고
    • Decision of network structure in the prediction of blank shape for square-box part
    • H. Yao Decision of network structure in the prediction of blank shape for square-box part Die Mould Technol. 6 1999 26 29
    • (1999) Die Mould Technol. , vol.6 , pp. 26-29
    • Yao, H.1
  • 17
    • 0030705772 scopus 로고    scopus 로고
    • Selecting the architecture of a class of back-propagation neural networks used as approximators
    • W.C. Carpenter Selecting the architecture of a class of back-propagation neural networks used as approximators Artif. Intell. Eng. Des. Anal. Manuf. 11 1997 33 44
    • (1997) Artif. Intell. Eng. Des. Anal. Manuf. , vol.11 , pp. 33-44
    • Carpenter, W.C.1
  • 18
    • 0003882606 scopus 로고    scopus 로고
    • People's Posts & Telecommunications Publishing House, Beijing
    • G. Cheng, et al., Application of the Genetic Algorithm, People's Posts & Telecommunications Publishing House, Beijing, 1999.
    • (1999) Application of the Genetic Algorithm
    • Cheng, G.1
  • 19
    • 85081440789 scopus 로고    scopus 로고
    • Theory and application of the supervised learning method based on gradient algorithms, Part II-training mechanism
    • J. Si Theory and application of the supervised learning method based on gradient algorithms, Part II-training mechanism J. Tsinghua Univ. 37 7 1997 71 73
    • (1997) J. Tsinghua Univ. , vol.37 , Issue.7 , pp. 71-73
    • Si, J.1
  • 20
    • 85081440837 scopus 로고    scopus 로고
    • Electronic equipment BIT condition predicted by neural network
    • Y. Xu Electronic equipment BIT condition predicted by neural network J. Data Acquisition Processing 14 3 1999 391 394
    • (1999) J. Data Acquisition Processing , vol.14 , Issue.3 , pp. 391-394
    • Xu, Y.1
  • 21
    • 0028543366 scopus 로고
    • Training feed forward networks with the Levenberg-Marquardt algorithm
    • M.T. Hagen Training feed forward networks with the Levenberg-Marquardt algorithm IEEE Trans Neural Netw. 5 6 1994 989 993
    • (1994) IEEE Trans Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagen, M.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.