메뉴 건너뛰기




Volumn 33, Issue 3, 2005, Pages 1295-1329

Nonparametric regression penalizing deviations from additivity

Author keywords

Additive models; AIC; Curse of dimensionality; Model choice; Nonparametric estimation; Parameter selection; Regularization

Indexed keywords


EID: 23744489640     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053604000001246     Document Type: Article
Times cited : (3)

References (19)
  • 1
    • 3042869574 scopus 로고
    • Local linear regression smoothers and their minimax efficiencies
    • FAN, J. (1993). Local linear regression smoothers and their minimax efficiencies. Ann. Statist. 21 196-216.
    • (1993) Ann. Statist. , vol.21 , pp. 196-216
    • Fan, J.1
  • 2
    • 9844238147 scopus 로고    scopus 로고
    • Local polynomial regression: Optimal kernels and asymptotic minimax efficiency
    • FAN, J., GASSER, T., GIJBELS, I., BROCKMANN, M. and ENGEL, J. (1997). Local polynomial regression: Optimal kernels and asymptotic minimax efficiency. Ann. Inst. Statist. Math. 49 79-99.
    • (1997) Ann. Inst. Statist. Math. , vol.49 , pp. 79-99
    • Fan, J.1    Gasser, T.2    Gijbels, I.3    Brockmann, M.4    Engel, J.5
  • 3
    • 0038703513 scopus 로고    scopus 로고
    • Moderate deviations and large deviations for kernel density estimators
    • GAO, F. (2003). Moderate deviations and large deviations for kernel density estimators. J. Theoret. Probab. 16 401-418.
    • (2003) J. Theoret. Probab. , vol.16 , pp. 401-418
    • Gao, F.1
  • 4
    • 84909719647 scopus 로고
    • How far are automatically chosen regression smoothing parameters from their optimum?
    • HÄRDLE, W., HALL, P. and MARRON, J. S. (1988). How far are automatically chosen regression smoothing parameters from their optimum? (with discussion). J. Amer. Statist. Assoc. 83 86-101.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 86-101
    • Härdle, W.1    Hall, P.2    Marron, J.S.3
  • 6
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
    • HURVICH, C., SIMONOFF, J. and TSAI, C. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 271-293.
    • (1998) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.60 , pp. 271-293
    • Hurvich, C.1    Simonoff, J.2    Tsai, C.3
  • 7
    • 0033233743 scopus 로고    scopus 로고
    • The existence and asymptotic properties of a backfitting projection algorithm under weak conditions
    • MAMMEN, E., LINTON, O. and NIELSEN, J. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann. Statist. 27 1443-1490.
    • (1999) Ann. Statist. , vol.27 , pp. 1443-1490
    • Mammen, E.1    Linton, O.2    Nielsen, J.3
  • 8
    • 0012630251 scopus 로고    scopus 로고
    • A general projection framework for constrained smoothing
    • MAMMEN, E., MARRON, J. S., TURLACH, B. and WAND, M. (2001). A general projection framework for constrained smoothing. Statist. Sci. 16 232-248.
    • (2001) Statist. Sci. , vol.16 , pp. 232-248
    • Mammen, E.1    Marron, J.S.2    Turlach, B.3    Wand, M.4
  • 9
    • 0038102088 scopus 로고    scopus 로고
    • An optimization interpretation of integration and back-fitting estimators for separable nonparametric models
    • NIELSEN, J. and LINTON, O. (1998). An optimization interpretation of integration and back-fitting estimators for separable nonparametric models. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 217-222.
    • (1998) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.60 , pp. 217-222
    • Nielsen, J.1    Linton, O.2
  • 12
    • 0001652945 scopus 로고    scopus 로고
    • Finite-sample variance of local polynomials: Analysis and solutions
    • SEIFERT, B. and GASSER, T. (1996). Finite-sample variance of local polynomials: Analysis and solutions. J. Amer. Statist. Assoc. 91 267-275.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 267-275
    • Seifert, B.1    Gasser, T.2
  • 13
    • 23044518687 scopus 로고    scopus 로고
    • Data adaptive ridging in local polynomial regression
    • SEIFERT, B. and GASSER, T. (2000). Data adaptive ridging in local polynomial regression. J. Comput. Graph. Statist. 9 338-360.
    • (2000) J. Comput. Graph. Statist. , vol.9 , pp. 338-360
    • Seifert, B.1    Gasser, T.2
  • 14
    • 0001377295 scopus 로고
    • Weak and strong uniform consistency of the kernel estimate of a density and its derivatives
    • SILVERMAN, B. (1978). Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist. 6 177-184.
    • (1978) Ann. Statist. , vol.6 , pp. 177-184
    • Silverman, B.1
  • 15
    • 0000439527 scopus 로고
    • Optimal rates of convergence for nonparametric estimators
    • STONE, C. (1980). Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8 1348-1360.
    • (1980) Ann. Statist. , vol.8 , pp. 1348-1360
    • Stone, C.1
  • 16
    • 0000439527 scopus 로고
    • Optimal global rates of convergence for nonparametric regression
    • STONE, C. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 1040-1053.
    • (1982) Ann. Statist. , vol.10 , pp. 1040-1053
    • Stone, C.1
  • 17
    • 0001227575 scopus 로고
    • Additive regression and other nonparametric models
    • STONE, C. (1985). Additive regression and other nonparametric models. Ann. Statist. 13 689-705.
    • (1985) Ann. Statist. , vol.13 , pp. 689-705
    • Stone, C.1
  • 18
    • 0001719983 scopus 로고
    • The dimensionality reduction principle for generalized additive models
    • STONE, C. (1986). The dimensionality reduction principle for generalized additive models. Ann. Statist. 14 590-606.
    • (1986) Ann. Statist. , vol.14 , pp. 590-606
    • Stone, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.