메뉴 건너뛰기




Volumn 33, Issue 2, 2005, Pages 149-161

Inference for domains under imputation for missing survey data

Author keywords

Bias adjusted estimator; Design based approach; Domain totals and means; Model assisted approach; Regression imputation; Uniform response

Indexed keywords


EID: 23744449132     PISSN: 03195724     EISSN: None     Source Type: Journal    
DOI: 10.1002/cjs.5550330201     Document Type: Review
Times cited : (5)

References (9)
  • 1
    • 0042499394 scopus 로고
    • A design-based perspective on missing data variance
    • US Bureau of the Census, Washington, DC
    • R. E. Fay (1991). A design-based perspective on missing data variance. In Proceedings of the 1991 Annual Research Conference, US Bureau of the Census, Washington, DC, 429-440.
    • (1991) Proceedings of the 1991 Annual Research Conference , pp. 429-440
    • Fay, R.E.1
  • 2
    • 23744442857 scopus 로고    scopus 로고
    • Linearization variance estimators for survey data
    • A. Demnati & J. N. K. Rao (2004). Linearization variance estimators for survey data. Survey Methodology, 30, 17-26.
    • (2004) Survey Methodology , vol.30 , pp. 17-26
    • Demnati, A.1    Rao, J.N.K.2
  • 3
    • 85039365716 scopus 로고    scopus 로고
    • Inference for totals in cluster sampling under mean imputation for missing data
    • International Symposium Series: Proceedings, Statistics Canada, Catalogue no. 11-522 XIE, CD/ROM
    • D. Haziza & J. N. K. Rao (2003a). Inference for totals in cluster sampling under mean imputation for missing data. In Symposium 2003: Challenges in Survey Taking for the Next Decade, International Symposium Series: Proceedings, Statistics Canada, Catalogue no. 11-522 XIE, CD/ROM.
    • (2003) Symposium 2003: Challenges in Survey Taking for the next Decade
    • Haziza, D.1    Rao, J.N.K.2
  • 4
    • 23744438870 scopus 로고    scopus 로고
    • Inference for population means under unweighted imputation for missing survey data
    • D. Haziza & J. N. K. Rao (2003b). Inference for population means under unweighted imputation for missing survey data. Survey Methodology, 29, 81-90.
    • (2003) Survey Methodology , vol.29 , pp. 81-90
    • Haziza, D.1    Rao, J.N.K.2
  • 7
    • 0012424407 scopus 로고
    • Methods for estimating the precision of survey estimates when imputation has been used
    • C. E. Särndal (1992). Methods for estimating the precision of survey estimates when imputation has been used. Survey Methodology, 18, 241-252.
    • (1992) Survey Methodology , vol.18 , pp. 241-252
    • Särndal, C.E.1
  • 8
    • 0442277963 scopus 로고    scopus 로고
    • Variance estimation for survey data with composite imputation and nonnegligible sampling fractions
    • J. Shao & P. Steel (1999). Variance estimation for survey data with composite imputation and nonnegligible sampling fractions. Journal of the American Statistical Association, 94, 254-265.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 254-265
    • Shao, J.1    Steel, P.2
  • 9
    • 0036498010 scopus 로고    scopus 로고
    • Jackknife variance estimation for multivariate statistics under hot-deck imputation from common donors
    • C. J. Skinner & J. N. K. Rao (2002). Jackknife variance estimation for multivariate statistics under hot-deck imputation from common donors. Journal of Statistical Planning and Inference, 102, 149-167.
    • (2002) Journal of Statistical Planning and Inference , vol.102 , pp. 149-167
    • Skinner, C.J.1    Rao, J.N.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.