메뉴 건너뛰기




Volumn 1045, Issue , 2005, Pages 79-92

Characterization of chaos: A new, fast, and effective measure

Author keywords

Chaotic dynamics; Chaotic measures; Nonlinear dynamics; Stickiness; Transient chaos

Indexed keywords

CHAOTIC DYNAMICS; CONFERENCE PAPER; COSMOLOGICAL PHENOMENA; EVOLUTION; NONLINEAR SYSTEM; PARTICLE RADIATION; PHYSICS;

EID: 23644445206     PISSN: 00778923     EISSN: None     Source Type: Book Series    
DOI: 10.1196/annals.1350.008     Document Type: Conference Paper
Times cited : (7)

References (12)
  • 1
    • 0010080529 scopus 로고    scopus 로고
    • Spectra of stretching numbers and helicity angles in dynamical systems
    • CONTOPOULOS G. & N. VOGLIS. 1996. Spectra of stretching numbers and helicity angles in dynamical systems. Cel. Mech. Dyn. Astron. 64: 1.
    • (1996) Cel. Mech. Dyn. Astron. , vol.64 , pp. 1
    • Contopoulos, G.1    Voglis, N.2
  • 2
    • 0035976867 scopus 로고    scopus 로고
    • Alignment indices: A new, simple method for determining the ordered or chaotic nature of orbits
    • SKOKOS, C. 2001. Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A 34: 10029.
    • (2001) J. Phys. A , vol.34 , pp. 10029
    • Skokos, C.1
  • 3
    • 0002443585 scopus 로고    scopus 로고
    • Fast Lyapunov indicators. Application to asteroidal motion
    • FROESCHLE, C., E. LEGA & R. GONCZI. 1997. Fast Lyapunov indicators. Application to asteroidal motion. Cel. Mech. Dyn. Astron. 67: 41.
    • (1997) Cel. Mech. Dyn. Astron. , vol.67 , pp. 41
    • Froeschle, C.1    Lega, E.2    Gonczi, R.3
  • 5
    • 0018989294 scopus 로고
    • Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems - A method for computing all of them. I-Theory. II-Numerical application
    • BENETTIN, G., L. GALGANI, A. GIORGILLI & J.-M. STRELCYN. 1980. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems-a method for computing all of them. I-Theory. II-Numerical application. Meccanica 15: 9, 21.
    • (1980) Meccanica , vol.15 , pp. 9
    • Benettin, G.1    Galgani, L.2    Giorgilli, A.3    Strelcyn, J.-M.4
  • 6
    • 33750108107 scopus 로고
    • The chaotic motion of the solar system - A numerical estimate of the size of the chaotic zones
    • LASKAR, J. 1990. The chaotic motion of the solar system-a numerical estimate of the size of the chaotic zones. Icarus 88: 266.
    • (1990) Icarus , vol.88 , pp. 266
    • Laskar, J.1
  • 7
    • 0001399722 scopus 로고
    • Orbits in highly perturbed dynamical systems. III. Nonperiodic orbits
    • CONTOPOULOS, G. 1971. Orbits in highly perturbed dynamical systems. III. Nonperiodic orbits. Astron. J. 76: 147.
    • (1971) Astron. J. , vol.76 , pp. 147
    • Contopoulos, G.1
  • 8
    • 36749115486 scopus 로고
    • Approximate constants of motion for classically chaotic vibrational dynamics: Vague tori, semiclassical quantization and classical intramolecular energy flow
    • SHIRTS R.B. & W.P. REINHARDT, 1982, Approximate constants of motion for classically chaotic vibrational dynamics: vague tori, semiclassical quantization and classical intramolecular energy flow. J. Chem. Phys. 77: 5204.
    • (1982) J. Chem. Phys. , vol.77 , pp. 5204
    • Shirts, R.B.1    Reinhardt, W.P.2
  • 11
    • 0142041531 scopus 로고    scopus 로고
    • Transient chaos and resonant phase mixing in violent relaxation
    • KANDRUP, H.E., I.M. VASS & I.V. SIDERIS. 2003. Transient chaos and resonant phase mixing in violent relaxation. Mon. Not. Roy. Astr. Soc. 341: 927.
    • (2003) Mon. Not. Roy. Astr. Soc. , vol.341 , pp. 927
    • Kandrup, H.E.1    Vass, I.M.2    Sideris, I.V.3
  • 12
    • 0002519122 scopus 로고
    • The applicability of the third integral of motion: Some numerical experiments
    • HÉNON, M. & C. HEILES. 1964. The applicability of the third integral of motion: some numerical experiments. Astron. J. 69: 73.
    • (1964) Astron. J. , vol.69 , pp. 73
    • Hénon, M.1    Heiles, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.