-
1
-
-
0010080529
-
Spectra of stretching numbers and helicity angles in dynamical systems
-
CONTOPOULOS G. & N. VOGLIS. 1996. Spectra of stretching numbers and helicity angles in dynamical systems. Cel. Mech. Dyn. Astron. 64: 1.
-
(1996)
Cel. Mech. Dyn. Astron.
, vol.64
, pp. 1
-
-
Contopoulos, G.1
Voglis, N.2
-
2
-
-
0035976867
-
Alignment indices: A new, simple method for determining the ordered or chaotic nature of orbits
-
SKOKOS, C. 2001. Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A 34: 10029.
-
(2001)
J. Phys. A
, vol.34
, pp. 10029
-
-
Skokos, C.1
-
3
-
-
0002443585
-
Fast Lyapunov indicators. Application to asteroidal motion
-
FROESCHLE, C., E. LEGA & R. GONCZI. 1997. Fast Lyapunov indicators. Application to asteroidal motion. Cel. Mech. Dyn. Astron. 67: 41.
-
(1997)
Cel. Mech. Dyn. Astron.
, vol.67
, pp. 41
-
-
Froeschle, C.1
Lega, E.2
Gonczi, R.3
-
5
-
-
0018989294
-
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems - A method for computing all of them. I-Theory. II-Numerical application
-
BENETTIN, G., L. GALGANI, A. GIORGILLI & J.-M. STRELCYN. 1980. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems-a method for computing all of them. I-Theory. II-Numerical application. Meccanica 15: 9, 21.
-
(1980)
Meccanica
, vol.15
, pp. 9
-
-
Benettin, G.1
Galgani, L.2
Giorgilli, A.3
Strelcyn, J.-M.4
-
6
-
-
33750108107
-
The chaotic motion of the solar system - A numerical estimate of the size of the chaotic zones
-
LASKAR, J. 1990. The chaotic motion of the solar system-a numerical estimate of the size of the chaotic zones. Icarus 88: 266.
-
(1990)
Icarus
, vol.88
, pp. 266
-
-
Laskar, J.1
-
7
-
-
0001399722
-
Orbits in highly perturbed dynamical systems. III. Nonperiodic orbits
-
CONTOPOULOS, G. 1971. Orbits in highly perturbed dynamical systems. III. Nonperiodic orbits. Astron. J. 76: 147.
-
(1971)
Astron. J.
, vol.76
, pp. 147
-
-
Contopoulos, G.1
-
8
-
-
36749115486
-
Approximate constants of motion for classically chaotic vibrational dynamics: Vague tori, semiclassical quantization and classical intramolecular energy flow
-
SHIRTS R.B. & W.P. REINHARDT, 1982, Approximate constants of motion for classically chaotic vibrational dynamics: vague tori, semiclassical quantization and classical intramolecular energy flow. J. Chem. Phys. 77: 5204.
-
(1982)
J. Chem. Phys.
, vol.77
, pp. 5204
-
-
Shirts, R.B.1
Reinhardt, W.P.2
-
12
-
-
0002519122
-
The applicability of the third integral of motion: Some numerical experiments
-
HÉNON, M. & C. HEILES. 1964. The applicability of the third integral of motion: some numerical experiments. Astron. J. 69: 73.
-
(1964)
Astron. J.
, vol.69
, pp. 73
-
-
Hénon, M.1
Heiles, C.2
|