메뉴 건너뛰기




Volumn , Issue , 2001, Pages 6-1-6-28

Dynamic neural networks and optimal signal processing

Author keywords

[No Author keywords available]

Indexed keywords


EID: 23544462684     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (2)

References (70)
  • 5
    • 85056979360 scopus 로고
    • Splines for observational data
    • Whaba, G., Splines for observational data, SIAM, 1990.
    • (1990) SIAM
    • Whaba, G.1
  • 7
    • 0001529096 scopus 로고
    • Sur l’interpolation et extrapolation des suites stationaires
    • Kolmogorov, A., Sur l’interpolation et extrapolation des suites stationaires, Compte rendus de l’Acad. Sci., Vol. 208, 2043-2045, 1939.
    • (1939) Compte rendus de l’Acad. Sci. , vol.208 , pp. 2043-2045
    • Kolmogorov, A.1
  • 9
    • 0041506167 scopus 로고
    • Sulla determinazione empirica di probabilita
    • Glivenko, V., Sulla determinazione empirica di probabilita, G. Inst. Ital. Attuari, 4, 1933.
    • (1933) G. Inst. Ital. Attuari , pp. 4
    • Glivenko, V.1
  • 13
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • Park, J. and Sandberg, E., Universal approximation using radial basis function networks, Neural Computation, 3, 303-314, 1989.
    • (1989) Neural Computation , vol.3 , pp. 303-314
    • Park, J.1    Sandberg, E.2
  • 14
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of sigmoid functions
    • Barron, A., Universal approximation bounds for superposition of sigmoid functions, IEEE Transactions on Information Theory, 39(3), 930-945, 1993.
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.1
  • 16
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • Moody, J. and Darken, C., Fast learning in networks of locally tuned processing units, Neural Computation, 1, 281-294, 1989.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 20
    • 0016033438 scopus 로고
    • A view of three decades of linear filtering theory
    • Kailath, T., A view of three decades of linear filtering theory, IEEE Transactions on Information Theory, IT-20, 146-181, 1974.
    • (1974) IEEE Transactions on Information Theory , vol.IT-20 , pp. 146-181
    • Kailath, T.1
  • 21
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • Casdagli, M., Nonlinear prediction of chaotic time series, Physics D 35, 335, 1989.
    • (1989) Physics D 35 , pp. 335
    • Casdagli, M.1
  • 22
    • 0000358422 scopus 로고
    • Time series prediction by using a connectionist network with internal delay lines
    • (Eds. Weigendand Gerschenfeld), Addison-Wesley, Reading, MA
    • Wan, E., Time series prediction by using a connectionist network with internal delay lines, in Times Series Prediction: Forecasting the Future and Understanding thePast, (Eds. Weigendand Gerschenfeld), Addison-Wesley, Reading, MA, 1994, 195-217.
    • (1994) Times Series Prediction: Forecasting the Future and Understanding thePast , pp. 195-217
    • Wan, E.1
  • 23
    • 0002291616 scopus 로고
    • Neural architectures for temporal sequence processing
    • (Eds. Weigend and Gerschenfeld), Addison-Wesley, Reading, MA
    • Mozer, M., Neural architectures for temporal sequence processing, in Predicting the Future and Understanding the Past, (Eds. Weigend and Gerschenfeld), Addison-Wesley, Reading, MA, 1994.
    • (1994) Predicting the Future and Understanding the Past
    • Mozer, M.1
  • 24
    • 84902207843 scopus 로고    scopus 로고
    • Chaotic time series modeling with neural networks
    • (Eds. Prochazka et al.), Birkhauser
    • Principe, J.C., Wang, L., and Kuo, J.M., Chaotic time series modeling with neural networks, Signal Analysis and Prediction, (Eds. Prochazka et al.), Birkhauser, 1998, 275-289.
    • (1998) Signal Analysis and Prediction , pp. 275-289
    • Principe, J.C.1    Wang, L.2    Kuo, J.M.3
  • 26
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • (Eds.D.A. Rand and L.S. Yang), Springer-Verlag, Berlin
    • Takens, F., Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, (Eds.D.A. Rand and L.S. Yang), Springer-Verlag, Berlin, 1981, 365-381.
    • (1981) Dynamical Systems and Turbulence , pp. 365-381
    • Takens, F.1
  • 27
    • 84900612239 scopus 로고
    • Noise reduction instate space using the focused gammamodel
    • Kuo, J.M. and Principe, J., Noise reduction instate space using the focused gammamodel, Proceedings ICASSP94, 2, 533-536, 1994.
    • (1994) Proceedings ICASSP94 , vol.2 , pp. 533-536
    • Kuo, J.M.1    Principe, J.2
  • 29
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • Grassberger, P. and Procaccia, I., Measuring the strangeness of strange attractors, Physica 9D, 189-208, 1983.
    • (1983) Physica 9D , pp. 189-208
    • Grassberger, P.1    Procaccia, I.2
  • 31
    • 0032203424 scopus 로고    scopus 로고
    • Local dynamic modeling with self-organizing feature maps and applications to nonlinear system identification and control, Special Issue on Intelligent Signal Processing
    • Principe, J., Wang, L., and Motter, M., Local dynamic modeling with self-organizing feature maps and applications to nonlinear system identification and control, Special Issue on Intelligent Signal Processing, IEEE Proceedings, 86(11), 2240-2258, 1998.
    • (1998) IEEE Proceedings , vol.86 , Issue.11 , pp. 2240-2258
    • Principe, J.1    Wang, L.2    Motter, M.3
  • 32
    • 85056957758 scopus 로고    scopus 로고
    • Dynamic modeling of chaotic time series with neural networks
    • May
    • Haykin, S. and Principe, J., Dynamic modeling of chaotic time series with neural networks, IEEE DSP Magazine, May, 1998.
    • (1998) IEEE DSP Magazine
    • Haykin, S.1    Principe, J.2
  • 34
    • 0031140389 scopus 로고    scopus 로고
    • Adaptive control using neural networks and approximate models
    • Narendra, K.S. and Mukhopadhyay, S., Adaptive control using neural networks and approximate models, in IEEE Transactions on Neural Networks, 8(3), 475-485, 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 475-485
    • Narendra, K.S.1    Mukhopadhyay, S.2
  • 36
    • 85014159393 scopus 로고
    • Codebook prediction: A nonlinear signal modeling paradigm
    • Singer, A.C., Wornell, G., and Oppenheim, A., Codebook prediction: a nonlinear signal modeling paradigm, IEEE ICASSP, 5, 325, 1992.
    • (1992) IEEE ICASSP , vol.5 , pp. 325
    • Singer, A.C.1    Wornell, G.2    Oppenheim, A.3
  • 40
    • 0019079258 scopus 로고
    • A best approximation framework and implementation for simulation of large scale nonlinear systems
    • Figueiredo, R. and Dwyer, T., A best approximation framework and implementation for simulation of large scale nonlinear systems, IEEE Transactions on Circuits and Systems, CAS-27:11, 1005-1014, 1980.
    • (1980) IEEE Transactions on Circuits and Systems , vol.CAS-27 , Issue.11 , pp. 1005-1014
    • Figueiredo, R.1    Dwyer, T.2
  • 41
    • 0006863682 scopus 로고
    • Approximation properties for a multilayer feedforward artificial neural network
    • Mhaskar, N., Approximation properties for a multilayer feedforward artificial neural network, Ad. Comp. Math., 1, 61-80, 1993.
    • (1993) Ad. Comp. Math. , vol.1 , pp. 61-80
    • Mhaskar, N.1
  • 42
    • 0022150259 scopus 로고
    • Fading memory and the problem of approximating nonlinear operators with Volterra series
    • CAS
    • Boyd, S. and Chua, L, Fading memory and the problem of approximating nonlinear operators with Volterra series, IEEE Transactions on Circuits and Systems, CAS:11, 1150-1161, 1985.
    • (1985) IEEE Transactions on Circuits and Systems , vol.11 , pp. 1150-1161
    • Boyd, S.1    Chua, L.2
  • 45
  • 46
    • 0001961758 scopus 로고
    • A generalized weierstrass approximation theorem
    • Prentice-Hall, Englewood Cliffs, NJ
    • Stone, M., A generalized weierstrass approximation theorem, in Studies of Modern Analysis, Vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 1962.
    • (1962) Studies of Modern Analysis , vol.1
    • Stone, M.1
  • 47
    • 0026895542 scopus 로고
    • The gamma model - a new neuralmodel for temporal processing
    • De Vries, B. and Principe, J.C., The gamma model - a new neuralmodel for temporal processing, Neural Networks, 5(4), 565-576, 1992.
    • (1992) Neural Networks , vol.5 , Issue.4 , pp. 565-576
    • De Vries, B.1    Principe, J.C.2
  • 48
    • 0028392406 scopus 로고
    • Locally recurrent globally feedforward networks: A critical review of architectures
    • Tsoi, A. and Back, A., Locally recurrent globally feedforward networks: a critical review of architectures, IEEE Transactions on Neural Networks, 5(2), 229-239, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 229-239
    • Tsoi, A.1    Back, A.2
  • 50
    • 84937349081 scopus 로고
    • Transient synthesis in the time domain
    • Kautz, W., Transient synthesis in the time domain, IRE Transactions on Circuit Theory, 1, 29-39, 1954.
    • (1954) IRE Transactions on Circuit Theory , vol.1 , pp. 29-39
    • Kautz, W.1
  • 53
  • 55
    • 0031194380 scopus 로고    scopus 로고
    • Uniformapproximation and gamma neural networks
    • Sandberg, I., and Xu, L., Uniformapproximation and gamma neural networks, Neural Networks, 10, 781-784, 1997b.
    • (1997) Neural Networks , vol.10 , pp. 781-784
    • Sandberg, I.1    Xu, L.2
  • 58
    • 0028401274 scopus 로고
    • An analysis of short termmemory structures in dynamic neural networks
    • special issue on dynamic nets
    • Principe, J., Kuo, J.M., and Celebi, S., An analysis of short termmemory structures in dynamic neural networks, in IEEE Transactions on Neural Networks, special issue on dynamic nets, 5(2), 331-337, 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 331-337
    • Principe, J.1    Kuo, J.M.2    Celebi, S.3
  • 59
    • 85056966877 scopus 로고
    • Isolated word speech recognition using the gamma model
    • Principe, J. and Tracey, J., Isolated word speech recognition using the gamma model, Journal of Artificial Neural Networks, 1(14), 481-489, 1994.
    • (1994) Journal of Artificial Neural Networks , vol.1 , Issue.14 , pp. 481-489
    • Principe, J.1    Tracey, J.2
  • 61
    • 0029373687 scopus 로고
    • On the determination of the optimal pole position of Laguerre filters
    • Oliveira e Silva, T., On the determination of the optimal pole position of Laguerre filters, IEEE Transactions on Signal Processing, 43(9), 2079-2087, 1995.
    • (1995) IEEE Transactions on Signal Processing , vol.43 , Issue.9 , pp. 2079-2087
    • Oliveira e Silva, T.1
  • 62
    • 0026157695 scopus 로고
    • System identification using Laguerre models
    • Wahlberg, B., System identification using Laguerre models, IEEE Transactions on Automatic Control, 36(5), 551-562, 1991.
    • (1991) IEEE Transactions on Automatic Control , vol.36 , Issue.5 , pp. 551-562
    • Wahlberg, B.1
  • 63
    • 0029250527 scopus 로고
    • Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles
    • Oliveira e Silva, T., Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles, IEEE Transactions on Automatic Control, 40(2), 342-346, 1995.
    • (1995) IEEE Transactions on Automatic Control , vol.40 , Issue.2 , pp. 342-346
    • Oliveira e Silva, T.1
  • 65
    • 85056974492 scopus 로고    scopus 로고
    • Locally recurrent networks: The gamma operator, properties and extensions
    • (Eds. Omidvar and Dayhoff), Academic Press, New York
    • Principe, J., Celebi, S., deVries, B., and Harris, J., Locally recurrent networks: the gamma operator, properties and extensions, in Neural Networks and Pattern Recognition, (Eds. Omidvar and Dayhoff), Academic Press, New York, 1996, 311-344.
    • (1996) Neural Networks and Pattern Recognition , pp. 311-344
    • Principe, J.1    Celebi, S.2    deVries, B.3    Harris, J.4
  • 67
    • 0029275618 scopus 로고
    • Parametric least squares approximation using gamma bases
    • Celebi, S. and Principe, J., Parametric least squares approximation using gamma bases, IEEE Transactions on Signal Processing, 43(3), 781-784, 1995.
    • (1995) IEEE Transactions on Signal Processing , vol.43 , Issue.3 , pp. 781-784
    • Celebi, S.1    Principe, J.2
  • 68
    • 0032203999 scopus 로고    scopus 로고
    • A signal processing framework based on dynamic neural networks with applications to the problems in adaptation, filtering, and classification
    • Feldkamp, L. and Puskorius, G., A signal processing framework based on dynamic neural networks with applications to the problems in adaptation, filtering, and classification, Proceedings of the IEEE, 86, 2259-2277, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2259-2277
    • Feldkamp, L.1    Puskorius, G.2
  • 70
    • 0033678386 scopus 로고    scopus 로고
    • Dynamic subgrouping in RTRLpr ovides a faster O(N2) algorithm
    • Euliano, N. and Principe, J., Dynamic subgrouping in RTRLpr ovides a faster O(N2) algorithm, Proceedings of ICASSP, 2000.
    • (2000) Proceedings of ICASSP
    • Euliano, N.1    Principe, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.