메뉴 건너뛰기




Volumn 200, Issue 1, 2004, Pages 1-17

On the classification of Liénard systems with amplitude-independent periods

Author keywords

Isochronous; Li nard equation; Reversibility

Indexed keywords


EID: 2342630039     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jde.2004.01.008     Document Type: Article
Times cited : (33)

References (14)
  • 1
    • 24544466788 scopus 로고    scopus 로고
    • Isochronicity via normal form
    • preprint
    • A. Algaba, E. Freire, E. Gamero, Isochronicity via normal form, preprint, 1998.
    • (1998)
    • Algaba, A.1    Freire, E.2    Gamero, E.3
  • 2
    • 0009389792 scopus 로고
    • Conditions for a Liénard equation to have a center
    • L.A. Cerkas, Conditions for a Liénard equation to have a center, Differential Equations 12 (2) (1977) 201-206.
    • (1977) Differential Equations , vol.12 , Issue.2 , pp. 201-206
    • Cerkas, L.A.1
  • 4
    • 0000539993 scopus 로고
    • Bifurcation of critical periods for plane vector fields
    • C. Chicone, M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc. 312 (2) (1989) 433-486.
    • (1989) Trans. Amer. Math. Soc. , vol.312 , Issue.2 , pp. 433-486
    • Chicone, C.1    Jacobs, M.2
  • 5
    • 0009264337 scopus 로고    scopus 로고
    • An algebraic approach to the classification of centers in polynomial Liénard systems
    • C. Christopher, An algebraic approach to the classification of centers in polynomial Liénard systems, J. Math. Anal. Appl. 229 (1999) 319-329.
    • (1999) J. Math. Anal. Appl. , vol.229 , pp. 319-329
    • Christopher, C.1
  • 6
    • 0039971668 scopus 로고    scopus 로고
    • Isochronous centers in planar polynomial systems
    • C. Christopher, J. Devlin, Isochronous centers in planar polynomial systems, SIAM J. Math. Anal. 28 (2) (1997) 162-177.
    • (1997) SIAM J. Math. Anal. , vol.28 , Issue.2 , pp. 162-177
    • Christopher, C.1    Devlin, J.2
  • 7
    • 0033163981 scopus 로고    scopus 로고
    • Small-amplitude limit cycle bifurcation for Liénard systems with quadratic or cubic damping or restoring forces
    • C. Christopher, S. Lynch, Small-amplitude limit cycle bifurcation for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity 12 (4) (1999) 1099-1112.
    • (1999) Nonlinearity , vol.12 , Issue.4 , pp. 1099-1112
    • Christopher, C.1    Lynch, S.2
  • 10
  • 11
    • 0002487294 scopus 로고
    • Behavior of the period of certain plane autonomous systems with centers
    • W.S. Loud, Behavior of the period of certain plane autonomous systems with centers, Contributions Differential Equations 3 (1964) 21-36.
    • (1964) Contributions Differential Equations , vol.3 , pp. 21-36
    • Loud, W.S.1
  • 13
    • 0001639716 scopus 로고
    • A new method of investigating the isochronicity of a system of two differential equations
    • I.I. Pleshkan, A new method of investigating the isochronicity of a system of two differential equations, Differential Equations 5 (1969) 796-802.
    • (1969) Differential Equations , vol.5 , pp. 796-802
    • Pleshkan, I.I.1
  • 14
    • 0033095591 scopus 로고    scopus 로고
    • On the period function of Liénard systems
    • M. Sabatini, On the period function of Liénard systems, J. Differential Equations 152 (1999) 467-487.
    • (1999) J. Differential Equations , vol.152 , pp. 467-487
    • Sabatini, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.