-
3
-
-
0344551989
-
Regular or stochastic dynamics in real analytic families of unimodal maps
-
[ALM]. Preprint IMS at Stony Brook, #2001/15. To appear in
-
[ALM] A. Avila, M. Lyubich and W. de Melo. Regular or stochastic dynamics in real analytic families of unimodal maps. Preprint IMS at Stony Brook, #2001/15. To appear in Invent. Math.
-
Invent. Math.
-
-
Avila, A.1
Lyubich, M.2
De Melo, W.3
-
4
-
-
4644321212
-
Statistical properties of unimodal maps: The quadratic family
-
[AM1] Preprint. To appear
-
[AM1] A. Avila, C.G. Moreira. Statistical properties of unimodal maps: the quadratic family. Preprint www.arXiv.org. To appear in Annals of Math.
-
Annals of Math
-
-
Avila, A.1
Moreira, C.G.2
-
8
-
-
0036175237
-
Almost sure rates of mixing for i.i.d. unimodal maps
-
[BBM]
-
[BBM] V. Baladi, M. Benedicks and V. Maume. Almost sure rates of mixing for i.i.d. unimodal maps. Ann. Sci. Ecole Norm. Sup. (4), v. 35 (2002), no. 1, 77-120.
-
(2002)
Ann. Sci. Ecole Norm. Sup. (4)
, vol.35
, Issue.1
, pp. 77-120
-
-
Baladi, V.1
Benedicks, M.2
Maume, V.3
-
9
-
-
0000640307
-
Strong stochastic stability and rate of mixing for unimodal maps
-
[BV]
-
[BV] V. Baladi and M. Viana. Strong stochastic stability and rate of mixing for unimodal maps. Ann. Sci. Ecole Norm. Sup. (4), v. 29 (1996), no. 4, 483-517.
-
(1996)
Ann. Sci. Ecole Norm. Sup. (4)
, vol.29
, Issue.4
, pp. 483-517
-
-
Baladi, V.1
Viana, M.2
-
11
-
-
0031530948
-
Generic hyperbolicity in the logistic family
-
[GS]
-
[GS] J. Graczyk and G. Swiatek. Generic hyperbolicity in the logistic family. Ann. of Math., v. 146 (1997), 1-52.
-
(1997)
Ann. of Math.
, vol.146
, pp. 1-52
-
-
Graczyk, J.1
Swiatek, G.2
-
12
-
-
0002053804
-
Absolutely continuous invariant measures for one-parameter families of one-dimensional maps
-
[J]
-
[J] M. Jakobson. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Comm. Math. Phys., v. 81 (1981), 39-88.
-
(1981)
Comm. Math. Phys.
, vol.81
, pp. 39-88
-
-
Jakobson, M.1
-
13
-
-
0002160620
-
Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps
-
[KN]
-
[KN] G. Keller and T. Nowicki. Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps. Comm. Math. Phys., 149 (1992), 31-69.
-
(1992)
Comm. Math. Phys.
, vol.149
, pp. 31-69
-
-
Keller, G.1
Nowicki, T.2
-
15
-
-
0001298363
-
Combinatorics, geometry and attractors of quasi-quadratic maps
-
[L1]
-
[L1] M. Lyubich. Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. Math. 140 (1994), 347-404.
-
(1994)
Ann. Math.
, vol.140
, pp. 347-404
-
-
Lyubich, M.1
-
16
-
-
0001057166
-
Dynamics of quadratic polynomials, I-II
-
[L2]
-
[L2] M. Lyubich. Dynamics of quadratic polynomials, I-II. Acta Math., 178 (1997), 185-297.
-
(1997)
Acta Math.
, vol.178
, pp. 185-297
-
-
Lyubich, M.1
-
17
-
-
0011665833
-
Dynamics of quadratic polynomials, III. Parapuzzle and SBR measure
-
[L3] Preprint IMS at Stony Brook, # 1995/5
-
[L3] M. Lyubich. Dynamics of quadratic polynomials, III. Parapuzzle and SBR measure. Preprint IMS at Stony Brook, # 1995/5. Astérisque, v. 261 (2000), 173-200.
-
(2000)
Astérisque
, vol.261
, pp. 173-200
-
-
Lyubich, M.1
-
18
-
-
0036662554
-
Almost every real quadratic map is either regular or stochastic
-
[L4]
-
[L4] M. Lyubich. Almost every real quadratic map is either regular or stochastic. Ann. of Math. (2) 156 (2002), no. 1, 1-78.
-
(2002)
Ann. of Math. (2)
, vol.156
, Issue.1
, pp. 1-78
-
-
Lyubich, M.1
-
19
-
-
0000970386
-
Invariant measures for Lebesgue typical quadratic maps
-
[MN]. Preprint IMS at Stony Brook, # 1996/6
-
[MN] M. Martens and T. Nowicki. Invariant measures for Lebesgue typical quadratic maps. Preprint IMS at Stony Brook, # 1996/6. Astérisque, v. 261 (2000), 239-252.
-
(2000)
Astérisque
, vol.261
, pp. 239-252
-
-
Martens, M.1
Nowicki, T.2
-
21
-
-
84974251975
-
The conjugacy of Collet-Eckmanns map of the interval with the tent map is Hölder continuous
-
[NP1]
-
[NP1] T. Nowicki and F. Przytycki. The conjugacy of Collet-Eckmann's map of the interval with the tent map is Hölder continuous. Ergodic Theory Dynam. Systems 9 (1989), no. 2, 379-388.
-
(1989)
Ergodic Theory Dynam. Systems
, vol.9
, Issue.2
, pp. 379-388
-
-
Nowicki, T.1
Przytycki, F.2
-
22
-
-
0040163957
-
Topological invariance of the Collet-Eckmann property for S-unimodal maps
-
[NP2]
-
[NP2] T. Nowicki and F. Przytycki. Topological invariance of the Collet-Eckmann property for S-unimodal maps. Fund. Math. 155 (1998), no. 1, 33-43.
-
(1998)
Fund. Math.
, vol.155
, Issue.1
, pp. 33-43
-
-
Nowicki, T.1
Przytycki, F.2
-
23
-
-
0032382986
-
Non-uniform hyperbolicity and universal bounds for S-unimodal maps
-
[NS]
-
[NS] T. Nowicki and D. Sands. Non-uniform hyperbolicity and universal bounds for S-unimodal maps. Invent. Math. 132 (1998), no. 3, 633-680.
-
(1998)
Invent. Math.
, vol.132
, Issue.3
, pp. 633-680
-
-
Nowicki, T.1
Sands, D.2
-
24
-
-
33749569489
-
A global view of dynamics and a conjecture of the denseness of finitude of attractors
-
[Pa]
-
[Pa] J. Palis. A global view of dynamics and a conjecture of the denseness of finitude of attractors. Astérisque, v. 261 (2000), 335-347.
-
(2000)
Astérisque
, vol.261
, pp. 335-347
-
-
Palis, J.1
-
25
-
-
0001132718
-
Positive Lyapunov exponents in families of one dimensional dynamical systems
-
[T1]
-
[T1] M. Tsujii. Positive Lyapunov exponents in families of one dimensional dynamical systems. Invent. Math. 111 (1993), 113-137.
-
(1993)
Invent. Math.
, vol.111
, pp. 113-137
-
-
Tsujii, M.1
-
26
-
-
0040363763
-
Small random perturbations of one dimensional dynamical systems and Margulis-Pesin entropy formula
-
[T2]
-
[T2] M. Tsujii. Small random perturbations of one dimensional dynamical systems and Margulis-Pesin entropy formula. Random & Comput. Dynamics. Vol.1 No.1 59-89, (1992).
-
(1992)
Random & Comput. Dynamics
, vol.1
, Issue.1
, pp. 59-89
-
-
Tsujii, M.1
-
27
-
-
0001470078
-
Decay of correlations for certain quadratic maps
-
[Y]
-
[Y] L.-S. Young. Decay of correlations for certain quadratic maps. Comm. Math. Phys., 146 (1992), 123-138
-
(1992)
Comm. Math. Phys.
, vol.146
, pp. 123-138
-
-
Young, L.-S.1
|