메뉴 건너뛰기




Volumn , Issue 286, 2003, Pages 81-118

Statistical properties of unimodal maps: Smooth families with negative schwarzian derivative

Author keywords

Decay of correlations; Stochastic stability; Unimodal maps

Indexed keywords


EID: 2342588499     PISSN: 03031179     EISSN: None     Source Type: Book Series    
DOI: None     Document Type: Article
Times cited : (26)

References (27)
  • 3
    • 0344551989 scopus 로고    scopus 로고
    • Regular or stochastic dynamics in real analytic families of unimodal maps
    • [ALM]. Preprint IMS at Stony Brook, #2001/15. To appear in
    • [ALM] A. Avila, M. Lyubich and W. de Melo. Regular or stochastic dynamics in real analytic families of unimodal maps. Preprint IMS at Stony Brook, #2001/15. To appear in Invent. Math.
    • Invent. Math.
    • Avila, A.1    Lyubich, M.2    De Melo, W.3
  • 4
    • 4644321212 scopus 로고    scopus 로고
    • Statistical properties of unimodal maps: The quadratic family
    • [AM1] Preprint. To appear
    • [AM1] A. Avila, C.G. Moreira. Statistical properties of unimodal maps: the quadratic family. Preprint www.arXiv.org. To appear in Annals of Math.
    • Annals of Math
    • Avila, A.1    Moreira, C.G.2
  • 8
    • 0036175237 scopus 로고    scopus 로고
    • Almost sure rates of mixing for i.i.d. unimodal maps
    • [BBM]
    • [BBM] V. Baladi, M. Benedicks and V. Maume. Almost sure rates of mixing for i.i.d. unimodal maps. Ann. Sci. Ecole Norm. Sup. (4), v. 35 (2002), no. 1, 77-120.
    • (2002) Ann. Sci. Ecole Norm. Sup. (4) , vol.35 , Issue.1 , pp. 77-120
    • Baladi, V.1    Benedicks, M.2    Maume, V.3
  • 9
    • 0000640307 scopus 로고    scopus 로고
    • Strong stochastic stability and rate of mixing for unimodal maps
    • [BV]
    • [BV] V. Baladi and M. Viana. Strong stochastic stability and rate of mixing for unimodal maps. Ann. Sci. Ecole Norm. Sup. (4), v. 29 (1996), no. 4, 483-517.
    • (1996) Ann. Sci. Ecole Norm. Sup. (4) , vol.29 , Issue.4 , pp. 483-517
    • Baladi, V.1    Viana, M.2
  • 11
    • 0031530948 scopus 로고    scopus 로고
    • Generic hyperbolicity in the logistic family
    • [GS]
    • [GS] J. Graczyk and G. Swiatek. Generic hyperbolicity in the logistic family. Ann. of Math., v. 146 (1997), 1-52.
    • (1997) Ann. of Math. , vol.146 , pp. 1-52
    • Graczyk, J.1    Swiatek, G.2
  • 12
    • 0002053804 scopus 로고
    • Absolutely continuous invariant measures for one-parameter families of one-dimensional maps
    • [J]
    • [J] M. Jakobson. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Comm. Math. Phys., v. 81 (1981), 39-88.
    • (1981) Comm. Math. Phys. , vol.81 , pp. 39-88
    • Jakobson, M.1
  • 13
    • 0002160620 scopus 로고
    • Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps
    • [KN]
    • [KN] G. Keller and T. Nowicki. Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps. Comm. Math. Phys., 149 (1992), 31-69.
    • (1992) Comm. Math. Phys. , vol.149 , pp. 31-69
    • Keller, G.1    Nowicki, T.2
  • 15
    • 0001298363 scopus 로고
    • Combinatorics, geometry and attractors of quasi-quadratic maps
    • [L1]
    • [L1] M. Lyubich. Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. Math. 140 (1994), 347-404.
    • (1994) Ann. Math. , vol.140 , pp. 347-404
    • Lyubich, M.1
  • 16
    • 0001057166 scopus 로고    scopus 로고
    • Dynamics of quadratic polynomials, I-II
    • [L2]
    • [L2] M. Lyubich. Dynamics of quadratic polynomials, I-II. Acta Math., 178 (1997), 185-297.
    • (1997) Acta Math. , vol.178 , pp. 185-297
    • Lyubich, M.1
  • 17
    • 0011665833 scopus 로고    scopus 로고
    • Dynamics of quadratic polynomials, III. Parapuzzle and SBR measure
    • [L3] Preprint IMS at Stony Brook, # 1995/5
    • [L3] M. Lyubich. Dynamics of quadratic polynomials, III. Parapuzzle and SBR measure. Preprint IMS at Stony Brook, # 1995/5. Astérisque, v. 261 (2000), 173-200.
    • (2000) Astérisque , vol.261 , pp. 173-200
    • Lyubich, M.1
  • 18
    • 0036662554 scopus 로고    scopus 로고
    • Almost every real quadratic map is either regular or stochastic
    • [L4]
    • [L4] M. Lyubich. Almost every real quadratic map is either regular or stochastic. Ann. of Math. (2) 156 (2002), no. 1, 1-78.
    • (2002) Ann. of Math. (2) , vol.156 , Issue.1 , pp. 1-78
    • Lyubich, M.1
  • 19
    • 0000970386 scopus 로고    scopus 로고
    • Invariant measures for Lebesgue typical quadratic maps
    • [MN]. Preprint IMS at Stony Brook, # 1996/6
    • [MN] M. Martens and T. Nowicki. Invariant measures for Lebesgue typical quadratic maps. Preprint IMS at Stony Brook, # 1996/6. Astérisque, v. 261 (2000), 239-252.
    • (2000) Astérisque , vol.261 , pp. 239-252
    • Martens, M.1    Nowicki, T.2
  • 21
    • 84974251975 scopus 로고
    • The conjugacy of Collet-Eckmanns map of the interval with the tent map is Hölder continuous
    • [NP1]
    • [NP1] T. Nowicki and F. Przytycki. The conjugacy of Collet-Eckmann's map of the interval with the tent map is Hölder continuous. Ergodic Theory Dynam. Systems 9 (1989), no. 2, 379-388.
    • (1989) Ergodic Theory Dynam. Systems , vol.9 , Issue.2 , pp. 379-388
    • Nowicki, T.1    Przytycki, F.2
  • 22
    • 0040163957 scopus 로고    scopus 로고
    • Topological invariance of the Collet-Eckmann property for S-unimodal maps
    • [NP2]
    • [NP2] T. Nowicki and F. Przytycki. Topological invariance of the Collet-Eckmann property for S-unimodal maps. Fund. Math. 155 (1998), no. 1, 33-43.
    • (1998) Fund. Math. , vol.155 , Issue.1 , pp. 33-43
    • Nowicki, T.1    Przytycki, F.2
  • 23
    • 0032382986 scopus 로고    scopus 로고
    • Non-uniform hyperbolicity and universal bounds for S-unimodal maps
    • [NS]
    • [NS] T. Nowicki and D. Sands. Non-uniform hyperbolicity and universal bounds for S-unimodal maps. Invent. Math. 132 (1998), no. 3, 633-680.
    • (1998) Invent. Math. , vol.132 , Issue.3 , pp. 633-680
    • Nowicki, T.1    Sands, D.2
  • 24
    • 33749569489 scopus 로고    scopus 로고
    • A global view of dynamics and a conjecture of the denseness of finitude of attractors
    • [Pa]
    • [Pa] J. Palis. A global view of dynamics and a conjecture of the denseness of finitude of attractors. Astérisque, v. 261 (2000), 335-347.
    • (2000) Astérisque , vol.261 , pp. 335-347
    • Palis, J.1
  • 25
    • 0001132718 scopus 로고
    • Positive Lyapunov exponents in families of one dimensional dynamical systems
    • [T1]
    • [T1] M. Tsujii. Positive Lyapunov exponents in families of one dimensional dynamical systems. Invent. Math. 111 (1993), 113-137.
    • (1993) Invent. Math. , vol.111 , pp. 113-137
    • Tsujii, M.1
  • 26
    • 0040363763 scopus 로고
    • Small random perturbations of one dimensional dynamical systems and Margulis-Pesin entropy formula
    • [T2]
    • [T2] M. Tsujii. Small random perturbations of one dimensional dynamical systems and Margulis-Pesin entropy formula. Random & Comput. Dynamics. Vol.1 No.1 59-89, (1992).
    • (1992) Random & Comput. Dynamics , vol.1 , Issue.1 , pp. 59-89
    • Tsujii, M.1
  • 27
    • 0001470078 scopus 로고
    • Decay of correlations for certain quadratic maps
    • [Y]
    • [Y] L.-S. Young. Decay of correlations for certain quadratic maps. Comm. Math. Phys., 146 (1992), 123-138
    • (1992) Comm. Math. Phys. , vol.146 , pp. 123-138
    • Young, L.-S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.