메뉴 건너뛰기




Volumn 32, Issue 5, 2004, Pages 422-430

Cycle times in single server cyclic Jackson networks

Author keywords

Arrival theorem; Cycle time distribution; Cyclic networks; Jackson networks; Output process

Indexed keywords

CONSUMER PRODUCTS; LAPLACE TRANSFORMS; MATHEMATICAL TECHNIQUES; NORMAL DISTRIBUTION; PROBABILISTIC LOGICS; RECURSIVE FUNCTIONS; THEOREM PROVING;

EID: 2342529076     PISSN: 01676377     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.orl.2003.12.001     Document Type: Article
Times cited : (3)

References (14)
  • 2
    • 0020194920 scopus 로고
    • On the response time and cycle time distributions in a two stage cyclic queue
    • Boxma O.J., Donk P. On the response time and cycle time distributions in a two stage cyclic queue. Performance Evaluation. 2:1982;181-194.
    • (1982) Performance Evaluation , vol.2 , pp. 181-194
    • Boxma, O.J.1    Donk, P.2
  • 3
    • 0020843570 scopus 로고
    • The product form for sojourn time distributions in cyclic exponential queues
    • Boxma O.J., Kelly F.P., Konheim A.G. The product form for sojourn time distributions in cyclic exponential queues. J. Assoc. Comput. Mech. 31(1):1984;128-133.
    • (1984) J. Assoc. Comput. Mech. , vol.31 , Issue.1 , pp. 128-133
    • Boxma, O.J.1    Kelly, F.P.2    Konheim, A.G.3
  • 4
    • 0019005217 scopus 로고
    • The cycle time distribution of exponential cyclic queues
    • Chow W.M. The cycle time distribution of exponential cyclic queues. J. Assoc. Comput. Mach. 27:1980;281-286.
    • (1980) J. Assoc. Comput. Mach. , vol.27 , pp. 281-286
    • Chow, W.M.1
  • 5
    • 0005300693 scopus 로고
    • Passage times for overtake-free paths in Gordon-Newell networks
    • Daduna H. Passage times for overtake-free paths in Gordon-Newell networks. Adv. Appl. Probab. 14:1982;672-686.
    • (1982) Adv. Appl. Probab. , vol.14 , pp. 672-686
    • Daduna, H.1
  • 6
    • 0037003221 scopus 로고    scopus 로고
    • Conditional job-observer property for multitype closed queueing networks
    • Daduna H., Szekli R. Conditional job-observer property for multitype closed queueing networks. J. Appl. Probab. 39(4):2002;865-881.
    • (2002) J. Appl. Probab. , vol.39 , Issue.4 , pp. 865-881
    • Daduna, H.1    Szekli, R.2
  • 7
    • 0040549165 scopus 로고
    • A note on cycle times in tree-like networks
    • Harrison P.G. A note on cycle times in tree-like networks. Adv. Appl. Probab. 16:1984;216-219.
    • (1984) Adv. Appl. Probab. , vol.16 , pp. 216-219
    • Harrison, P.G.1
  • 8
    • 0022024168 scopus 로고
    • On normalizing constants in queueing networks
    • Harrison P.G. On normalizing constants in queueing networks. Oper. Res. 33:1985;464-468.
    • (1985) Oper. Res. , vol.33 , pp. 464-468
    • Harrison, P.G.1
  • 9
    • 0000923654 scopus 로고
    • Sojourn times in closed queueing networks
    • Kelly F.P., Pollett P.K. Sojourn times in closed queueing networks. Adv. Appl. Probab. 15:1983;638-656.
    • (1983) Adv. Appl. Probab. , vol.15 , pp. 638-656
    • Kelly, F.P.1    Pollett, P.K.2
  • 11
    • 0020632947 scopus 로고
    • The time for a round trip in a cycle of exponential queues
    • Schassberger R., Daduna H. The time for a round trip in a cycle of exponential queues. J. Assoc. Comput. Mach. 30:1983;146-150.
    • (1983) J. Assoc. Comput. Mach. , vol.30 , pp. 146-150
    • Schassberger, R.1    Daduna, H.2
  • 12
    • 0023357838 scopus 로고
    • Sojourn times in queueing networks with multiserver nodes
    • Schassberger R., Daduna H. Sojourn times in queueing networks with multiserver nodes. J. Appl. Probab. 24(2):1987;511-521.
    • (1987) J. Appl. Probab. , vol.24 , Issue.2 , pp. 511-521
    • Schassberger, R.1    Daduna, H.2
  • 14
    • 0039978512 scopus 로고    scopus 로고
    • Formulas and representations for cyclic Markovian networks via Palm calculus
    • Zazanis M.A. Formulas and representations for cyclic Markovian networks via Palm calculus. Queueing Systems. 26(1-2):1997;151-167.
    • (1997) Queueing Systems , vol.26 , Issue.1-2 , pp. 151-167
    • Zazanis, M.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.