-
1
-
-
0034604110
-
Role of transforming growth factor β in human disease
-
Blobe G.C., et al. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342:2000;1350-1358
-
(2000)
N. Engl. J. Med.
, vol.342
, pp. 1350-1358
-
-
Blobe, G.C.1
-
2
-
-
0038682002
-
Mechanisms of TGF-β signaling from cell membrane to the nucleus
-
Shi Y., Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 113:2003;685-700
-
(2003)
Cell
, vol.113
, pp. 685-700
-
-
Shi, Y.1
Massagué, J.2
-
3
-
-
0036910425
-
Two major Smad pathways in TGF-β superfamily signalling
-
Miyazawa K., et al. Two major Smad pathways in TGF-β superfamily signalling. Genes Cells. 7:2002;1191-1204
-
(2002)
Genes Cells
, vol.7
, pp. 1191-1204
-
-
Miyazawa, K.1
-
4
-
-
0037204990
-
Signal transduction by the TGF-β superfamily
-
Attisano L., Wrana J.L. Signal transduction by the TGF-β superfamily. Science. 296:2002;1646-1647
-
(2002)
Science
, vol.296
, pp. 1646-1647
-
-
Attisano, L.1
Wrana, J.L.2
-
5
-
-
1642539976
-
GADD34-PP1c recruited by Smad7 dephosphorylates TGFβ type I receptor
-
Shi W., et al. GADD34-PP1c recruited by Smad7 dephosphorylates TGFβ type I receptor. J. Cell Biol. 164:2004;291-300
-
(2004)
J. Cell Biol.
, vol.164
, pp. 291-300
-
-
Shi, W.1
-
6
-
-
0344629431
-
Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription
-
Lin X., et al. Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription. Mol. Cell. Biol. 23:2003;9081-9093
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 9081-9093
-
-
Lin, X.1
-
7
-
-
0035694910
-
Smad regulation in TGF-β signal transduction
-
Moustakas A., et al. Smad regulation in TGF-β signal transduction. J. Cell Sci. 114:2001;4359-4369
-
(2001)
J. Cell Sci.
, vol.114
, pp. 4359-4369
-
-
Moustakas, A.1
-
8
-
-
0142104985
-
Smad-dependent and Smad-independent pathways in TGF-β family signalling
-
Derynck R., Zhang Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature. 425:2003;577-584
-
(2003)
Nature
, vol.425
, pp. 577-584
-
-
Derynck, R.1
Zhang, Y.E.2
-
9
-
-
0027930903
-
Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-β
-
Yamashita H., et al. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-β J. Biol. Chem. 269:1994;20172-20178
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 20172-20178
-
-
Yamashita, H.1
-
10
-
-
0032559594
-
Oligomeric structure of type I and type II transforming growth factor β receptors: Homodimers form in the ER and persist at the plasma membrane
-
Gilboa L., et al. Oligomeric structure of type I and type II transforming growth factor β receptors: homodimers form in the ER and persist at the plasma membrane. J. Cell Biol. 140:1998;767-777
-
(1998)
J. Cell Biol.
, vol.140
, pp. 767-777
-
-
Gilboa, L.1
-
11
-
-
0033524943
-
Crystal structure of the cytoplasmic domain of the type I TGF β receptor in complex with FKBP12
-
Huse M., et al. Crystal structure of the cytoplasmic domain of the type I TGF β receptor in complex with FKBP12. Cell. 96:1999;425-436
-
(1999)
Cell
, vol.96
, pp. 425-436
-
-
Huse, M.1
-
12
-
-
0029792338
-
Signaling by chimeric erythropoietin-TGF-β receptors: Homodimerization of the cytoplasmic domain of the type I TGF-β receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction
-
Luo K., Lodish H.F. Signaling by chimeric erythropoietin-TGF-β receptors: homodimerization of the cytoplasmic domain of the type I TGF-β receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J. 15:1996;4485-4496
-
(1996)
EMBO J.
, vol.15
, pp. 4485-4496
-
-
Luo, K.1
Lodish, H.F.2
-
13
-
-
0030030373
-
Complementation between kinase-defective and activation defective TGF-β receptors reveals a novel form of receptor cooperativity essential for signaling
-
Weis-Garcia F., Massagué J. Complementation between kinase-defective and activation defective TGF-β receptors reveals a novel form of receptor cooperativity essential for signaling. EMBO J. 15:1996;276-289
-
(1996)
EMBO J.
, vol.15
, pp. 276-289
-
-
Weis-Garcia, F.1
Massagué, J.2
-
14
-
-
0030972496
-
Positive and negative regulation of type II TGF-β receptor signal transduction by autophosphorylation on multiple serine residues
-
Luo K., Lodish H.F. Positive and negative regulation of type II TGF-β receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J. 16:1997;1970-1981
-
(1997)
EMBO J.
, vol.16
, pp. 1970-1981
-
-
Luo, K.1
Lodish, H.F.2
-
15
-
-
12944273545
-
Activin receptor-like kinase 1 modulates transforming growth factor-β 1 signaling in the regulation of angiogenesis
-
Oh S.P., et al. Activin receptor-like kinase 1 modulates transforming growth factor-β 1 signaling in the regulation of angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 97:2000;2626-2631
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 2626-2631
-
-
Oh, S.P.1
-
16
-
-
0242330126
-
Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling
-
Goumans M.J., et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell. 12:2003;817-828
-
(2003)
Mol. Cell
, vol.12
, pp. 817-828
-
-
Goumans, M.J.1
-
17
-
-
0030795214
-
Expression of ALK-1, a type 1 serine/threonine kinase receptor, coincides with sites of vasculogenesis and angiogenesis in early mouse development
-
Roelen B.A., et al. Expression of ALK-1, a type 1 serine/threonine kinase receptor, coincides with sites of vasculogenesis and angiogenesis in early mouse development. Dev. Dyn. 209:1997;418-430
-
(1997)
Dev. Dyn.
, vol.209
, pp. 418-430
-
-
Roelen, B.A.1
-
18
-
-
10744225133
-
SB-431542 and Gleevec inhibit transforming growth factor-β-induced proliferation of human osteosarcoma cells
-
Matsuyama S., et al. SB-431542 and Gleevec inhibit transforming growth factor-β-induced proliferation of human osteosarcoma cells. Cancer Res. 63:2003;7791-7798
-
(2003)
Cancer Res.
, vol.63
, pp. 7791-7798
-
-
Matsuyama, S.1
-
19
-
-
0346037263
-
Transforming growth factor β (TGFβ) signaling via differential activation of activin receptor-like kinases 2 and 5 during cardiac development. Role in regulating parasympathetic responsiveness
-
Ward S.M., et al. Transforming growth factor β (TGFβ) signaling via differential activation of activin receptor-like kinases 2 and 5 during cardiac development. Role in regulating parasympathetic responsiveness. J. Biol. Chem. 277:2002;50183-50189
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 50183-50189
-
-
Ward, S.M.1
-
20
-
-
0028999341
-
Cooperative binding of transforming growth factor (TGF)-β 2 to the types I and II TGF-β receptors
-
Rodriguez C., et al. Cooperative binding of transforming growth factor (TGF)-β 2 to the types I and II TGF-β receptors. J. Biol. Chem. 270:1995;15919-15922
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 15919-15922
-
-
Rodriguez, C.1
-
21
-
-
0035805505
-
Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-β superfamily. Specialized binding regions for transforming growth factor-β and inhibin a
-
Esparza-Lopez J., et al. Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-β superfamily. Specialized binding regions for transforming growth factor-β and inhibin A. J. Biol. Chem. 276:2001;14588-14596
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 14588-14596
-
-
Esparza-Lopez, J.1
-
22
-
-
0037979081
-
Heart and liver defects and reduced transforming growth factor β2 sensitivity in transforming growth factor β type III receptor-deficient embryos
-
Stenvers K.L., et al. Heart and liver defects and reduced transforming growth factor β2 sensitivity in transforming growth factor β type III receptor-deficient embryos. Mol. Cell. Biol. 23:2003;4371-4385
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 4371-4385
-
-
Stenvers, K.L.1
-
23
-
-
0042471943
-
β-arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling
-
Chen W., et al. β-arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling. Science. 301:2003;1394-1397
-
(2003)
Science
, vol.301
, pp. 1394-1397
-
-
Chen, W.1
-
24
-
-
0032484022
-
Role of endoglin in cellular responses to transforming growth factor-β. A comparative study with betaglycan
-
Letamendia A., et al. Role of endoglin in cellular responses to transforming growth factor-β. A comparative study with betaglycan. J. Biol. Chem. 273:1998;33011-33019
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 33011-33019
-
-
Letamendia, A.1
-
25
-
-
0037401059
-
Hereditary hemorrhagic telangiectasia: An update on transforming growth factor β signaling in vasculogenesis and angiogenesis
-
van den Driesche S., et al. Hereditary hemorrhagic telangiectasia: an update on transforming growth factor β signaling in vasculogenesis and angiogenesis. Cardiovasc. Res. 58:2003;20-31
-
(2003)
Cardiovasc. Res.
, vol.58
, pp. 20-31
-
-
Van Den Driesche, S.1
-
26
-
-
1542572120
-
Glycosylphosphatidylinositol-anchored proteins regulate transforming growth factor-β signaling in human keratinocytes
-
Tam B.Y., et al. Glycosylphosphatidylinositol-anchored proteins regulate transforming growth factor-β signaling in human keratinocytes. J. Biol. Chem. 278:2003;49610-49617
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 49610-49617
-
-
Tam, B.Y.1
-
27
-
-
0032428684
-
SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor
-
Tsukazaki T., et al. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell. 95:1998;779-791
-
(1998)
Cell
, vol.95
, pp. 779-791
-
-
Tsukazaki, T.1
-
28
-
-
18244362844
-
Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling
-
Wu J.W., et al. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling. Mol. Cell. 8:2001;1277-1289
-
(2001)
Mol. Cell
, vol.8
, pp. 1277-1289
-
-
Wu, J.W.1
-
29
-
-
0034614708
-
Structural basis of Smad2 recognition by the Smad anchor for receptor activation
-
Wu G., et al. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science. 287:2000;92-97
-
(2000)
Science
, vol.287
, pp. 92-97
-
-
Wu, G.1
-
30
-
-
0030961168
-
Smad4 and FAST-1 in the assembly of activin-responsive factor
-
Chen X., et al. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature. 389:1997;85-89
-
(1997)
Nature
, vol.389
, pp. 85-89
-
-
Chen, X.1
-
31
-
-
0029802485
-
A transcriptional partner for MAD proteins in TGF-β signalling
-
Chen X., et al. A transcriptional partner for MAD proteins in TGF-β signalling. Nature. 383:1996;691-696
-
(1996)
Nature
, vol.383
, pp. 691-696
-
-
Chen, X.1
-
32
-
-
0034007925
-
Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif
-
Germain S., et al. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14:2000;435-451
-
(2000)
Genes Dev.
, vol.14
, pp. 435-451
-
-
Germain, S.1
-
33
-
-
0037080983
-
Different Smad2 partners bind a common hydrophobic pocket in Smad2 via a defined proline-rich motif
-
Randall R.A., et al. Different Smad2 partners bind a common hydrophobic pocket in Smad2 via a defined proline-rich motif. EMBO J. 21:2002;145-156
-
(2002)
EMBO J.
, vol.21
, pp. 145-156
-
-
Randall, R.A.1
-
34
-
-
0034253480
-
The nuclear import function of Smad2 is masked by SARA and unmasked by TGFβ-dependent phosphorylation
-
Xu L., et al. The nuclear import function of Smad2 is masked by SARA and unmasked by TGFβ-dependent phosphorylation. Nat. Cell Biol. 2:2000;559-562
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 559-562
-
-
Xu, L.1
-
35
-
-
1642458401
-
Recognition of phosphorylated-Smad2-containing complexes by a novel Smad interaction motif
-
Randall R.A., et al. Recognition of phosphorylated-Smad2-containing complexes by a novel Smad interaction motif. Mol. Cell. Biol. 24:2004;1106-1121
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 1106-1121
-
-
Randall, R.A.1
-
36
-
-
0036670359
-
Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus
-
Xu L., et al. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus. Mol. Cell. 10:2002;271-282
-
(2002)
Mol. Cell
, vol.10
, pp. 271-282
-
-
Xu, L.1
-
37
-
-
0142211206
-
Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import
-
Xu L., et al. Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import. J. Biol. Chem. 278:2003;42569-42577
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 42569-42577
-
-
Xu, L.1
-
38
-
-
0032483544
-
Crystal structure of a Smad MH1 domain bound to DNA: Insights on DNA binding in TGF-β signaling
-
Shi Y., et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell. 94:1998;585-594
-
(1998)
Cell
, vol.94
, pp. 585-594
-
-
Shi, Y.1
-
39
-
-
0035512155
-
Nodal signaling in early vertebrate embryos. Themes and variations
-
Whitman M. Nodal signaling in early vertebrate embryos. Themes and variations. Dev. Cell. 1:2001;605-617
-
(2001)
Dev. Cell
, vol.1
, pp. 605-617
-
-
Whitman, M.1
-
40
-
-
0038274163
-
Links between tumor suppressors: P53 is required for TGF-β gene responses by cooperating with Smads
-
Cordenonsi M., et al. Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell. 113:2003;301-314
-
(2003)
Cell
, vol.113
, pp. 301-314
-
-
Cordenonsi, M.1
-
41
-
-
1642499349
-
Transforming growth factor β/Smad3 signaling regulates IRF-7 function and transcriptional activation of the β interferon promoter
-
Qing J., et al. Transforming growth factor β/Smad3 signaling regulates IRF-7 function and transcriptional activation of the β interferon promoter. Mol. Cell. Biol. 24:2004;1411-1425
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 1411-1425
-
-
Qing, J.1
-
42
-
-
0034695483
-
Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor β-related signaling
-
Sirard C., et al. Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor β-related signaling. J. Biol. Chem. 275:2000;2063-2070
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 2063-2070
-
-
Sirard, C.1
-
43
-
-
0038548187
-
Attenuation of the TGFβ-Smad signaling pathway in pancreatic tumor cells confers resistance to TGFβ-induced growth arrest
-
Nicolás F.J., Hill C.S. Attenuation of the TGFβ-Smad signaling pathway in pancreatic tumor cells confers resistance to TGFβ-induced growth arrest. Oncogene. 22:2003;3698-3711
-
(2003)
Oncogene
, vol.22
, pp. 3698-3711
-
-
Nicolás, F.J.1
Hill, C.S.2
-
44
-
-
0036670339
-
Nucleocytoplasmic shuttling of Smads 2, 3 and 4 permits sensing of TGF-β receptor activity
-
Inman G.J., et al. Nucleocytoplasmic shuttling of Smads 2, 3 and 4 permits sensing of TGF-β receptor activity. Mol. Cell. 10:2002;283-294
-
(2002)
Mol. Cell
, vol.10
, pp. 283-294
-
-
Inman, G.J.1
-
45
-
-
0034252221
-
Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal
-
Watanabe M., et al. Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 1:2000;176-182
-
(2000)
EMBO Rep.
, vol.1
, pp. 176-182
-
-
Watanabe, M.1
-
46
-
-
0034460336
-
Transforming growth factor β-independent shuttling of Smad4 between the cytoplasm and nucleus
-
Pierreux C.E., et al. Transforming growth factor β-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol. Cell. Biol. 20:2000;9041-9054
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 9041-9054
-
-
Pierreux, C.E.1
-
47
-
-
0037455715
-
An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity
-
Xiao Z., et al. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity. Oncogene. 22:2003;1057-1069
-
(2003)
Oncogene
, vol.22
, pp. 1057-1069
-
-
Xiao, Z.1
-
48
-
-
0038400997
-
In or out? the dynamics of Smad nucleocytoplasmic shuttling
-
Reguly T., Wrana J.L. In or out? The dynamics of Smad nucleocytoplasmic shuttling. Trends Cell Biol. 13:2003;216-220
-
(2003)
Trends Cell Biol.
, vol.13
, pp. 216-220
-
-
Reguly, T.1
Wrana, J.L.2
-
49
-
-
0034604343
-
Importin β mediates nuclear translocation of Smad3
-
Xiao Z., et al. Importin β mediates nuclear translocation of Smad3. J. Biol. Chem. 275:2000;23425-23428
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 23425-23428
-
-
Xiao, Z.1
-
50
-
-
0035167095
-
Transforming growth factor-β induces nuclear import of Smad3 in an importin-β1 and Ran-dependent manner
-
Kurisaki A., et al. Transforming growth factor-β induces nuclear import of Smad3 in an importin-β1 and Ran-dependent manner. Mol. Biol. Cell. 12:2001;1079-1091
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 1079-1091
-
-
Kurisaki, A.1
-
51
-
-
0034608799
-
A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation
-
Xiao Z., et al. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc. Natl. Acad. Sci. U. S. A. 97:2000;7853-7858
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 7853-7858
-
-
Xiao, Z.1
-
52
-
-
0030886059
-
Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1
-
Wilson P.A., et al. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development. 124:1997;3177-3184
-
(1997)
Development
, vol.124
, pp. 3177-3184
-
-
Wilson, P.A.1
-
53
-
-
0032524323
-
The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors
-
Dyson S., Gurdon J.B. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell. 93:1998;557-568
-
(1998)
Cell
, vol.93
, pp. 557-568
-
-
Dyson, S.1
Gurdon, J.B.2
-
54
-
-
0037598870
-
Distinct endocytic pathways regulate TGF-β receptor signalling and turnover
-
Di Guglielmo G.M., et al. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat. Cell Biol. 5:2003;410-421
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 410-421
-
-
Di Guglielmo, G.M.1
-
55
-
-
0042738094
-
TLP, a novel modulator of TGF-β signaling, has opposite effects on Smad2- and Smad3-dependent signaling
-
Felici A., et al. TLP, a novel modulator of TGF-β signaling, has opposite effects on Smad2- and Smad3-dependent signaling. EMBO J. 22:2003;4465-4477
-
(2003)
EMBO J.
, vol.22
, pp. 4465-4477
-
-
Felici, A.1
-
56
-
-
0038369998
-
A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells
-
Kang Y., et al. A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell. 11:2003;915-926
-
(2003)
Mol. Cell
, vol.11
, pp. 915-926
-
-
Kang, Y.1
-
57
-
-
10744228283
-
Arkadia amplifies TGF-β superfamily signalling through degradation of Smad7
-
Koinuma D., et al. Arkadia amplifies TGF-β superfamily signalling through degradation of Smad7. EMBO J. 22:2003;6458-6470
-
(2003)
EMBO J.
, vol.22
, pp. 6458-6470
-
-
Koinuma, D.1
-
58
-
-
0033841033
-
A Caenorhabditis elegans type I TGF β receptor can function in the absence of type II kinase to promote larval development
-
Gunther C.V., et al. A Caenorhabditis elegans type I TGF β receptor can function in the absence of type II kinase to promote larval development. Development. 127:2000;3337-3347
-
(2000)
Development
, vol.127
, pp. 3337-3347
-
-
Gunther, C.V.1
-
59
-
-
0141864365
-
Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis
-
Rebbapragada A., et al. Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis. Mol. Cell. Biol. 23:2003;7230-7242
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7230-7242
-
-
Rebbapragada, A.1
-
60
-
-
1542357571
-
Growth differentiation factor-9 (GDF-9) signaling is mediated by the type I receptor ALK5
-
Mazerbourg S., et al. Growth differentiation factor-9 (GDF-9) signaling is mediated by the type I receptor ALK5. Mol. Endocrinol. 18:2004;653-665
-
(2004)
Mol. Endocrinol.
, vol.18
, pp. 653-665
-
-
Mazerbourg, S.1
-
61
-
-
0033549789
-
A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation
-
Zhu H., et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 400:1999;687-693
-
(1999)
Nature
, vol.400
, pp. 687-693
-
-
Zhu, H.1
-
62
-
-
0036753547
-
Control of Smad7 stability by competition between acetylation and ubiquitination
-
Gronroos E., et al. Control of Smad7 stability by competition between acetylation and ubiquitination. Mol. Cell. 10:2002;483-493
-
(2002)
Mol. Cell
, vol.10
, pp. 483-493
-
-
Gronroos, E.1
-
63
-
-
0037805684
-
Activation of transforming growth factor-β signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4
-
Lin X., et al. Activation of transforming growth factor-β signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J. Biol. Chem. 278:2003;18714-18719
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 18714-18719
-
-
Lin, X.1
-
64
-
-
1842844308
-
Repression of Smad4 transcriptional activity by SUMO modification
-
Long J., et al. Repression of Smad4 transcriptional activity by SUMO modification. Biochem. J. 379:2004;23-29
-
(2004)
Biochem. J.
, vol.379
, pp. 23-29
-
-
Long, J.1
-
65
-
-
0842332220
-
Regulation of large-scale chromatin unfolding by Smad4
-
Yan J., et al. Regulation of large-scale chromatin unfolding by Smad4. Biochem. Biophys. Res. Commun. 315:2004;330-335
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.315
, pp. 330-335
-
-
Yan, J.1
-
66
-
-
0037468634
-
Identification of three novel Smad binding proteins involved in cell polarity
-
Warner D.R., et al. Identification of three novel Smad binding proteins involved in cell polarity. FEBS Lett. 539:2003;167-173
-
(2003)
FEBS Lett.
, vol.539
, pp. 167-173
-
-
Warner, D.R.1
-
67
-
-
0034976149
-
TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation
-
Bonni S., et al. TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat. Cell Biol. 3:2001;587-595
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 587-595
-
-
Bonni, S.1
-
68
-
-
2342577102
-
Akt physically interacts with Smad3 to regulate the sensitivity of TGFβ-induced apoptosis
-
(in press).
-
Conery, A.R., et al. Akt physically interacts with Smad3 to regulate the sensitivity of TGFβ-induced apoptosis. Nat. Cell Biol. (in press).
-
Nat. Cell Biol.
-
-
Conery, A.R.1
-
69
-
-
1342346489
-
A Transforming growth factor β-induced Smad3/Smad4 complex directly activates protein kinase a
-
Zhang L., et al. A Transforming growth factor β-induced Smad3/Smad4 complex directly activates protein kinase A. Mol. Cell. Biol. 24:2004;2169-2180
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 2169-2180
-
-
Zhang, L.1
|