메뉴 건너뛰기




Volumn 25, Issue 1-2, 2004, Pages 93-117

Parametric sensitivity analysis in optimal control of a reaction diffusion system. I. Solution differentiability

Author keywords

Control constraints; Generalized equation; Otimal control; Parameter perturbation; Parametric sensitivity; Reaction diffusion equations

Indexed keywords

DIFFUSION; PARTIAL DIFFERENTIAL EQUATIONS; PERTURBATION TECHNIQUES; QUADRATIC PROGRAMMING;

EID: 2342466141     PISSN: 01630563     EISSN: None     Source Type: Journal    
DOI: 10.1081/NFA-120034120     Document Type: Article
Times cited : (33)

References (24)
  • 1
    • 0001201545 scopus 로고
    • The Lagrange-Newton method for infinite-dimensional optimization problems
    • Alt, W. (1990). The Lagrange-Newton method for infinite-dimensional optimization problems. Numer. Funct. Anal. Optim. 11:201-224.
    • (1990) Numer. Funct. Anal. Optim. , vol.11 , pp. 201-224
    • Alt, W.1
  • 8
    • 0002449719 scopus 로고
    • Implicit function theorems for generalized equations
    • Dontchev, A. (1995). Implicit function theorems for generalized equations. Math. Program. 70:91-106.
    • (1995) Math. Program. , vol.70 , pp. 91-106
    • Dontchev, A.1
  • 10
    • 2342557889 scopus 로고    scopus 로고
    • Parametric sensitivity analysis in optimal control of a reaction-diffusion system - Part II: Practical methods and examples
    • to appear
    • Griesse, R. (2003b). Parametric sensitivity analysis in optimal control of a reaction-diffusion system - Part II: practical methods and examples. Optimization Methods and Software (to appear).
    • (2003) Optimization Methods and Software
    • Griesse, R.1
  • 11
    • 0347746409 scopus 로고    scopus 로고
    • Analysis of the Lagrange-SQP-Newton method for the control of a phase-field equation
    • Heinkenschloss, M., Tröltzsch, F. (1998). Analysis of the Lagrange-SQP-Newton method for the control of a phase-field equation. Control Cybernet 28:177-211.
    • (1998) Control Cybernet , vol.28 , pp. 177-211
    • Heinkenschloss, M.1    Tröltzsch, F.2
  • 16
    • 0037005085 scopus 로고    scopus 로고
    • Sensitivity analysis for parametric optimal control of semilinear parabolic equations
    • Malanowski, K. (2002). Sensitivity analysis for parametric optimal control of semilinear parabolic equations. J. Convex Anal. 9(2):543-561.
    • (2002) J. Convex Anal. , vol.9 , Issue.2 , pp. 543-561
    • Malanowski, K.1
  • 17
    • 22644451912 scopus 로고    scopus 로고
    • Lipschitz stability of solutions to parametric optimal control for parabolic equations
    • Malanowski, K., Tröltzsch, F. (1999). Lipschitz stability of solutions to parametric optimal control for parabolic equations. Z. Anal. Anwendungen 18(2):469-489.
    • (1999) Z. Anal. Anwendungen , vol.18 , Issue.2 , pp. 469-489
    • Malanowski, K.1    Tröltzsch, F.2
  • 18
    • 0000463120 scopus 로고    scopus 로고
    • Convergence of approximations to nonlinear optimal control problems
    • In: Fiacco, A., ed. New York: Marcel Dekker
    • Malanowski, K., Büskens, C., Maurer, H. (1998). Convergence of approximations to nonlinear optimal control problems. In: Fiacco, A., ed. Mathematical Programming with Data Perturbations. New York: Marcel Dekker, pp. 253-284.
    • (1998) Mathematical Programming with Data Perturbations , pp. 253-284
    • Malanowski, K.1    Büskens, C.2    Maurer, H.3
  • 19
    • 0002958234 scopus 로고
    • First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems
    • Maurer, H., Zowe, J. (1979). First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Program. 16:98-110.
    • (1979) Math. Program. , vol.16 , pp. 98-110
    • Maurer, H.1    Zowe, J.2
  • 22
    • 0018977011 scopus 로고
    • Strongly regular generalized equations
    • Robinson, S. (1980). Strongly regular generalized equations. Math. Oper. Res. 5(1):43-62.
    • (1980) Math. Oper. Res. , vol.5 , Issue.1 , pp. 43-62
    • Robinson, S.1
  • 24
    • 0002733529 scopus 로고    scopus 로고
    • Lipschitz stability of solutions of linear-quadratic parabolic control problems with respect to perturbations
    • Tröltzsch, F. (2000). Lipschitz stability of solutions of linear-quadratic parabolic control problems with respect to perturbations. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 7(2):289-306.
    • (2000) Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. , vol.7 , Issue.2 , pp. 289-306
    • Tröltzsch, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.