메뉴 건너뛰기




Volumn 167, Issue 1, 2004, Pages 91-134

A geometric optics method for high-frequency electromagnetic fields computations near fold caustics-Part II. The energy

Author keywords

Electromagnetism; Geometric optics; Hamilton Jacobi; Hamiltonian system; Laser; Plasma; Ray tracing; Transport equation; Upwind scheme; Viscosity solution; Wave equation

Indexed keywords

ALGORITHMS; FINITE DIFFERENCE METHOD; GEOMETRICAL OPTICS; GEOMETRY; LASERS; PLASMAS;

EID: 2342437684     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2003.09.046     Document Type: Article
Times cited : (13)

References (11)
  • 2
    • 0033421722 scopus 로고    scopus 로고
    • Direct solution of multi-valued phase-space solutions for Hamilton- Jacobi equations
    • J.-D. Benamou, Direct solution of multi-valued phase-space solutions for Hamilton-Jacobi equations, Comm. Pure Appl. Math. 52 (1999) 1443-1475.
    • (1999) Comm. Pure Appl. Math. , vol.52 , pp. 1443-1475
    • Benamou, J.-D.1
  • 3
    • 0038547744 scopus 로고    scopus 로고
    • A geometric optics method for high frequency electromagnetic fields computations near fold caustics-Part I
    • Benamou J.-D. Lafitte O. Sentis R. Solliec I. A geometric optics method for high frequency electromagnetic fields computations near fold caustics-Part I J. Comput. Appl. Math. 156 2003 93-125
    • (2003) J. Comput. Appl. Math. , vol.156 , pp. 93-125
    • Benamou, J.-D.1    Lafitte, O.2    Sentis, R.3    Solliec, I.4
  • 6
    • 84980174402 scopus 로고
    • Oscillatory integrals, lagrange immersions and unfolding of singularities
    • Duistermaat J.J. Oscillatory integrals, lagrange immersions and unfolding of singularities Comm. Pure Appl. Math. 27 1974 207-281
    • (1974) Comm. Pure Appl. Math. , vol.27 , pp. 207-281
    • Duistermaat, J.J.1
  • 10
    • 84981755544 scopus 로고
    • Uniform asymptotic expansions at a caustic
    • Ludwig D. Uniform asymptotic expansions at a caustic Comm. Pure Appl. Math. 19 1966 215-250
    • (1966) Comm. Pure Appl. Math. , vol.19 , pp. 215-250
    • Ludwig, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.