메뉴 건너뛰기




Volumn 36, Issue 2, 2004, Pages 398-416

Why do these quite different best-choice problems have the same solutions?

Author keywords

Optimal stopping; Planar Poisson process; Secretary problem

Indexed keywords

EQUIVALENCE CLASSES; MATHEMATICAL MODELS; OPTIMIZATION; RANDOM PROCESSES;

EID: 2342421238     PISSN: 00018678     EISSN: None     Source Type: Journal    
DOI: 10.1239/aap/1086957578     Document Type: Article
Times cited : (14)

References (13)
  • 2
    • 3142669733 scopus 로고
    • Choosing the best of the current crop
    • Campbell, G. and Samuels, S. M. (1981). Choosing the best of the current crop. Adv. Appl. Prob. 13, 510-532.
    • (1981) Adv. Appl. Prob. , vol.13 , pp. 510-532
    • Campbell, G.1    Samuels, S.M.2
  • 3
    • 2342440094 scopus 로고
    • Maximizing the duration of owning a relatively best object
    • American Mathematical Society, Providence, RI (Contemp. Math. 125)
    • Ferguson, T. S., Hardwick, J. P. and Tamaki, M. (1992). Maximizing the duration of owning a relatively best object. In Strategies for Sequential Search and Selection in Real Time (Contemp. Math. 125), American Mathematical Society, Providence, RI, pp. 37-57.
    • (1992) Strategies for Sequential Search and Selection in Real Time , pp. 37-57
    • Ferguson, T.S.1    Hardwick, J.P.2    Tamaki, M.3
  • 5
    • 0030519099 scopus 로고    scopus 로고
    • On the full information best choice problem
    • Gnedin, A. V. (1996). On the full information best choice problem. J. Appl. Prob. 33, 678-687.
    • (1996) J. Appl. Prob. , vol.33 , pp. 678-687
    • Gnedin, A.V.1
  • 6
    • 2342426777 scopus 로고    scopus 로고
    • Best choice from the planar Poisson process
    • To appear in
    • Gnedin, A. V. (2004). Best choice from the planar Poisson process. To appear in Stoch. Process. Appl.
    • (2004) Stoch. Process. Appl.
    • Gnedin, A.V.1
  • 8
    • 0008657307 scopus 로고
    • On a best-choice problem with partial information
    • Petruccelli, J. D. (1980). On a best-choice problem with partial information. Ann. Statist. 8, 1171-1174.
    • (1980) Ann. Statist. , vol.8 , pp. 1171-1174
    • Petruccelli, J.D.1
  • 9
    • 38249038104 scopus 로고
    • The full-information best choice problem with a random number of observations
    • Porosiński, Z. (1987). The full-information best choice problem with a random number of observations. Stoch. Process. Appl. 24, 293-307.
    • (1987) Stoch. Process. Appl. , vol.24 , pp. 293-307
    • Porosiński, Z.1
  • 10
    • 0036473956 scopus 로고    scopus 로고
    • On best choice problems having similar solutions
    • Porosiński, Z. (2002). On best choice problems having similar solutions. Statist. Prob. Lett. 56, 321-327.
    • (2002) Statist. Prob. Lett. , vol.56 , pp. 321-327
    • Porosiński, Z.1
  • 11
    • 0000226208 scopus 로고
    • The best choice problem for a random number of objects
    • Presman, E. L. and Sonin, I. M. (1972). The best choice problem for a random number of objects. Theory Prob. Appl. 17, 657-668.
    • (1972) Theory Prob. Appl. , vol.17 , pp. 657-668
    • Presman, E.L.1    Sonin, I.M.2
  • 12
    • 0042779575 scopus 로고
    • Exact solutions for the full information best choice problem
    • Department of Statistics Purdue University 82-17
    • Samuels, S. M. (1982). Exact solutions for the full information best choice problem. Mimeo Ser. 82-17, Department of Statistics, Purdue University.
    • (1982) Mimeo Ser.
    • Samuels, S.M.1
  • 13
    • 0002444787 scopus 로고
    • Secretary problems
    • eds B. K. Ghosh and P. K. Sen, Marcel Dekker, New York
    • Samuels, S. M. (1991). Secretary problems. In Handbook of Sequential Analysis, eds B. K. Ghosh and P. K. Sen, Marcel Dekker, New York, pp. 381-405.
    • (1991) Handbook of Sequential Analysis , pp. 381-405
    • Samuels, S.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.