메뉴 건너뛰기




Volumn 33, Issue 4, 2005, Pages 1397-1421

Probabilities of randomly centered small balls and quantization in banach spaces

Author keywords

Asymptotic equipartition property; High resolution quantization; Small ball probabilities; Small deviations

Indexed keywords


EID: 23244464008     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/009117905000000161     Document Type: Article
Times cited : (8)

References (17)
  • 1
  • 2
    • 0036611931 scopus 로고    scopus 로고
    • Source coding, large deviations, and approximate pattern matching
    • Special issue on Shannon theory: Perspective, trends, and applications
    • DEMBO, A. and KONTOYIANNIS, I. (2002). Source coding, large deviations, and approximate pattern matching. IEEE Trans. Inform. Theory 48 1590-1615. Special issue on Shannon theory: Perspective, trends, and applications.
    • (2002) IEEE Trans. Inform. Theory , vol.48 , pp. 1590-1615
    • Dembo, A.1    Kontoyiannis, I.2
  • 4
    • 0037689167 scopus 로고    scopus 로고
    • Small ball probabilities around random centers of Gaussian measures and applications to quantization
    • DEREICH, S. (2003). Small ball probabilities around random centers of Gaussian measures and applications to quantization. J. Theoret. Probab. 16 427-449.
    • (2003) J. Theoret. Probab. , vol.16 , pp. 427-449
    • Dereich, S.1
  • 5
    • 0037273827 scopus 로고    scopus 로고
    • On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces
    • DEREICH, S., FEHRINGER, F., MATOUSSI, A. and SCHEUTZOW, M. (2003). On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces. J. Theoret. Probab. 16 249-265.
    • (2003) J. Theoret. Probab. , vol.16 , pp. 249-265
    • Dereich, S.1    Fehringer, F.2    Matoussi, A.3    Scheutzow, M.4
  • 6
    • 0001461506 scopus 로고
    • Metric entropy and the small ball problem for Gaussian measures
    • KUELBS, J. and LI, W. V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 133-157.
    • (1993) J. Funct. Anal. , vol.116 , pp. 133-157
    • Kuelbs, J.1    Li, W.V.2
  • 8
    • 0141643497 scopus 로고    scopus 로고
    • Optimal series representation of fractional Brownian sheet
    • KÜHN, T. and LINDE, W. (2002). Optimal series representation of fractional Brownian sheet. Bernoulli 8 669-696.
    • (2002) Bernoulli , vol.8 , pp. 669-696
    • Kühn, T.1    Linde, W.2
  • 10
    • 0032092875 scopus 로고    scopus 로고
    • Existence of small ball constants for fractional Brownian motions
    • LI, W. V. and LINDE, W. (1998). Existence of small ball constants for fractional Brownian motions. C. R. Acad. Sci. Paris 326 1329-1334.
    • (1998) C. R. Acad. Sci. Paris , vol.326 , pp. 1329-1334
    • Li, W.V.1    Linde, W.2
  • 11
    • 70350344396 scopus 로고    scopus 로고
    • Gaussian processes: Inequalities, small ball probabilities and applications
    • North-Holland, Amsterdam
    • LI, W. V. and SHAO, Q.-M. (2001). Gaussian processes: Inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods. Handbook of Statist. 19 533-597. North-Holland, Amsterdam.
    • (2001) Stochastic Processes: Theory and Methods. Handbook of Statist. , vol.19 , pp. 533-597
    • Li, W.V.1    Shao, Q.-M.2
  • 14
    • 19344365741 scopus 로고    scopus 로고
    • Small deviations for fractional stable processes
    • To appear. arXiv: math.PR/0305092
    • LIFSHITS, M. and SIMON, T. (2005). Small deviations for fractional stable processes. Ann. Inst. H. Poincaré Probab. Statist. To appear. arXiv: math.PR/0305092.
    • (2005) Ann. Inst. H. Poincaré Probab. Statist.
    • Lifshits, M.1    Simon, T.2
  • 15
    • 3042642304 scopus 로고    scopus 로고
    • Sharp asymptotics of the functional quantization problem for Gaussian processes
    • LUSCHGY, H. and PAGÈS, G. (2004). Sharp asymptotics of the functional quantization problem for Gaussian processes. Ann. Probab. 32 1574-1599.
    • (2004) Ann. Probab. , vol.32 , pp. 1574-1599
    • Luschgy, H.1    Pagès, G.2
  • 16
    • 0041928037 scopus 로고    scopus 로고
    • A Gaussian correlation inequality and its application to the existence of small ball constant
    • SHAO, Q.-M. (2003). A Gaussian correlation inequality and its application to the existence of small ball constant. Stochastic Process. Appl. 107 269-287.
    • (2003) Stochastic Process. Appl. , vol.107 , pp. 269-287
    • Shao, Q.-M.1
  • 17
    • 0000819460 scopus 로고
    • New Gaussian estimates for enlarged balls
    • TALAGRAND, M. (1993). New Gaussian estimates for enlarged balls. Geom. Funct. Anal. 3 502-526.
    • (1993) Geom. Funct. Anal. , vol.3 , pp. 502-526
    • Talagrand, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.