-
2
-
-
0000654048
-
A new proof of the Hartman-Wintner law of the iterated logarithm
-
DE ACOSTA, A. (1983). A new proof of the Hartman-Wintner law of the iterated logarithm. Ann. Probab. 11 270-276.
-
(1983)
Ann. Probab.
, vol.11
, pp. 270-276
-
-
De Acosta, A.1
-
3
-
-
23244433630
-
Strong approximations for partial sums of i.i.d. B-valued r.v.'s in the domain of attraction of a Gaussian law
-
EINMAHL, U. (1988). Strong approximations for partial sums of i.i.d. B-valued r.v.'s in the domain of attraction of a Gaussian law. Probab. Theory Related Fields 77 65-85.
-
(1988)
Probab. Theory Related Fields
, vol.77
, pp. 65-85
-
-
Einmahl, U.1
-
4
-
-
0007315452
-
Toward a general law of the iterated logarithm in Banach space
-
EINMAHL, U. (1993). Toward a general law of the iterated logarithm in Banach space. Ann. Probab. 21 2012-2045.
-
(1993)
Ann. Probab.
, vol.21
, pp. 2012-2045
-
-
Einmahl, U.1
-
5
-
-
0035470866
-
Cluster sets for a generalized law of the iterated logarithm in Banach spaces
-
EINMAHL, U. and KUELBS, J. (2001). Cluster sets for a generalized law of the iterated logarithm in Banach spaces. Ann. Probab. 29 1451-1475.
-
(2001)
Ann. Probab.
, vol.29
, pp. 1451-1475
-
-
Einmahl, U.1
Kuelbs, J.2
-
6
-
-
0011507598
-
An extension of the law of the iterated logarithm to variables without variance
-
FELLER, W. (1968). An extension of the law of the iterated logarithm to variables without variance. J. Math. Mech. 18 343-355.
-
(1968)
J. Math. Mech.
, vol.18
, pp. 343-355
-
-
Feller, W.1
-
7
-
-
0000867820
-
Some extensions of the LIL via self-normalization
-
GRIFFIN, P. and KUELBS, J. (1991). Some extensions of the LIL via self-normalization. Ann. Probab. 19 380-395.
-
(1991)
Ann. Probab.
, vol.19
, pp. 380-395
-
-
Griffin, P.1
Kuelbs, J.2
-
8
-
-
0000653864
-
On the law of the iterated logarithm
-
HARTMAN, P. and WINTNER, A. (1941). On the law of the iterated logarithm. Amer. J. Math. 63 169-176.
-
(1941)
Amer. J. Math.
, vol.63
, pp. 169-176
-
-
Hartman, P.1
Wintner, A.2
-
9
-
-
0001274342
-
The limit points of a normalized random walk
-
KESTEN, H. (1970). The limit points of a normalized random walk. Ann. Math. Statist. 41 1173-1205.
-
(1970)
Ann. Math. Statist.
, vol.41
, pp. 1173-1205
-
-
Kesten, H.1
-
10
-
-
0000844766
-
Sums of independent random variables - Without moment conditions
-
KESTEN, H. (1972). Sums of independent random variables - without moment conditions. Ann. Math. Statist. 43 701-732.
-
(1972)
Ann. Math. Statist.
, vol.43
, pp. 701-732
-
-
Kesten, H.1
-
11
-
-
0000668746
-
Toward a universal law of the iterated logarithm I
-
KLASS, M. (1976). Toward a universal law of the iterated logarithm I. Z. Wahrsch. Verw. Gebiete 36 165-178.
-
(1976)
Z. Wahrsch. Verw. Gebiete
, vol.36
, pp. 165-178
-
-
Klass, M.1
-
12
-
-
0040542177
-
Toward a universal law of the iterated logarithm II
-
KLASS, M. (1977). Toward a universal law of the iterated logarithm II. Z. Wahrsch. Verw. Gebiete 39 151-165.
-
(1977)
Z. Wahrsch. Verw. Gebiete
, vol.39
, pp. 151-165
-
-
Klass, M.1
-
13
-
-
0347175137
-
The finite mean LIL bounds are sharp
-
KLASS, M. (1984). The finite mean LIL bounds are sharp. Ann. Probab. 12 907-911.
-
(1984)
Ann. Probab.
, vol.12
, pp. 907-911
-
-
Klass, M.1
-
14
-
-
0000627671
-
Über das Gesetz des iterierten Logarithmus
-
KOLMOGOROV, A. N. (1929). Über das Gesetz des iterierten Logarithmus. Math. Ann. 101 126-135.
-
(1929)
Math. Ann.
, vol.101
, pp. 126-135
-
-
Kolmogorov, A.N.1
-
16
-
-
0007322677
-
The LIL when X is in the domain of attraction of a Gaussian law
-
KUELBS, J. (1985). The LIL when X is in the domain of attraction of a Gaussian law. Ann. Probab. 13 825-859.
-
(1985)
Ann. Probab.
, vol.13
, pp. 825-859
-
-
Kuelbs, J.1
-
17
-
-
0041136188
-
Some results on LIL behavior
-
KUELBS, J. and ZINN, J. (1983). Some results on LIL behavior. Ann. Probab. 11 506-557.
-
(1983)
Ann. Probab.
, vol.11
, pp. 506-557
-
-
Kuelbs, J.1
Zinn, J.2
-
18
-
-
0041786653
-
The law of the logarithm for weighted sums of independent random variables
-
Li, D. L. and TOMKINS, R. J. (2003). The law of the logarithm for weighted sums of independent random variables. J. Theoret. Probab. 16 519-542.
-
(2003)
J. Theoret. Probab.
, vol.16
, pp. 519-542
-
-
Li, D.L.1
Tomkins, R.J.2
-
19
-
-
84971735074
-
On the law of the iterated logarithm in the infinite variance case
-
MALLER, R. A. (1980). On the law of the iterated logarithm in the infinite variance case. J. Austral. Math. Soc. Ser. A 30 5-14.
-
(1980)
J. Austral. Math. Soc. Ser. A
, vol.30
, pp. 5-14
-
-
Maller, R.A.1
-
20
-
-
23244437261
-
Criteria for strong convergence of normalized sums of independent random variables and their application
-
MARTIKAINEN, A. I. (1984). Criteria for strong convergence of normalized sums of independent random variables and their application. Theory Probab. Appl. 29 502-516.
-
(1984)
Theory Probab. Appl.
, vol.29
, pp. 502-516
-
-
Martikainen, A.I.1
-
22
-
-
0002058266
-
General one-sided laws of the iterated logarithm
-
PRUITT, W. (1981). General one-sided laws of the iterated logarithm. Ann. Probab. 9 1-48.
-
(1981)
Ann. Probab.
, vol.9
, pp. 1-48
-
-
Pruitt, W.1
-
23
-
-
0000187772
-
An invariance principle for the law of the iterated logarithm
-
STRASSEN, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3 211-226.
-
(1964)
Z. Wahrsch. Verw. Gebiete
, vol.3
, pp. 211-226
-
-
Strassen, V.1
-
24
-
-
0040701355
-
A converse to the law of the iterated logarithm
-
STRASSEN, V. (1966). A converse to the law of the iterated logarithm. Z Wahrsch. Verw. Gebiete 4 265-268.
-
(1966)
Z Wahrsch. Verw. Gebiete
, vol.4
, pp. 265-268
-
-
Strassen, V.1
|