-
1
-
-
0003085097
-
Poisson structure induced (topological) field theories
-
P. Schaller and T. Strobl, Poisson structure induced (topological) field theories, Mod. Phys. Lett. A 9 (1994) 3129.
-
(1994)
Mod. Phys. Lett. A
, vol.9
, pp. 3129
-
-
Schaller, P.1
Strobl, T.2
-
2
-
-
0000124884
-
Two-dimensional gravity and nonlinear gauge theory
-
N. Ikeda, Two-dimensional gravity and nonlinear gauge theory, Ann. Phys. (NY) 235 (1994) 435
-
(1994)
Ann. Phys. (NY)
, vol.235
, pp. 435
-
-
Ikeda, N.1
-
5
-
-
4243693939
-
The topological G/G WZW model in the generalized momentum representation
-
[hep-th/9505012]
-
A.Y. Alekseev, P. Schaller and T. Strobl, The topological G/G WZW model in the generalized momentum representation, Phys. Rev. D 52 (1995) 7146 [hep-th/9505012].
-
(1995)
Phys. Rev. D
, vol.52
, pp. 7146
-
-
Alekseev, A.Y.1
Schaller, P.2
Strobl, T.3
-
6
-
-
0009536077
-
Introduction to Poisson-σ models
-
Low-Dimensional models in statistical physics and quantum field theory, H. Grosse and L. Pittner eds., Springer, Berlin
-
P. Schaller and T. Strobl, Introduction to Poisson-σ models, in Low-Dimensional models in statistical physics and quantum field theory, H. Grosse and L. Pittner eds., Lecture Notes in Physics 469, Springer, Berlin 1996, p. 321.
-
(1996)
Lecture Notes in Physics
, vol.469
, pp. 321
-
-
Schaller, P.1
Strobl, T.2
-
7
-
-
0007072035
-
Classical and quantum gravity in (1+1)-dimensions. Part 1. A unifying approach
-
[gr-qc/9508020], erratum ibid. 14 (1997) 825
-
T. Klosch and T. Strobl, Classical and quantum gravity in (1+1)-dimensions. part 1. A unifying approach, Class. and Quant. Grav. 13 (1996) 965 [gr-qc/9508020], erratum ibid. 14 (1997) 825.
-
(1996)
Class. and Quant. Grav.
, vol.13
, pp. 965
-
-
Klosch, T.1
Strobl, T.2
-
8
-
-
0042856871
-
-
Habilitationsschrift, Rheinisch-Westfälische Technische Hochschule Aachen
-
T. Strobl, Gravity in two spacetime dimensions, Habilitationsschrift, Rheinisch-Westfälische Technische Hochschule Aachen, 1999.
-
(1999)
Gravity in Two Spacetime Dimensions
-
-
Strobl, T.1
-
10
-
-
0031206493
-
2d quantum dilaton gravity as/versus a finite dimensional quantum mechanical systems
-
[hep-th/9702139]
-
T. Strobl, 2d quantum dilaton gravity as/versus a finite dimensional quantum mechanical systems, Nucl. Phys. 57 (Proc. Suppl.) (1997) 330 [hep-th/9702139].
-
(1997)
Nucl. Phys.
, vol.57
, Issue.PROC. SUPPL.
, pp. 330
-
-
Strobl, T.1
-
11
-
-
0004251801
-
-
Oxford mathematical monographs, Clarendon, New York
-
N.M.J. Woodhouse, Geometric quantization, Oxford mathematical monographs, Clarendon, New York 1992.
-
(1992)
Geometric Quantization
-
-
Woodhouse, N.M.J.1
-
12
-
-
33744769996
-
Deformation theory and quantization, 1. Deformations of symplectic structures
-
F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory and quantization, 1. Deformations of symplectic structures, Ann. Phys. (NY) 111 (1978) 61.
-
(1978)
Ann. Phys. (NY)
, vol.111
, pp. 61
-
-
Bayen, F.1
Flato, M.2
Fronsdal, C.3
Lichnerowicz, A.4
Sternheimer, D.5
-
13
-
-
34948832288
-
Deformation theory and quantization, 2. Physical applications
-
F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory and quantization, 2. Physical applications, Ann. Phys. (NY) 111 (1978) 111
-
(1978)
Ann. Phys. (NY)
, vol.111
, pp. 111
-
-
Bayen, F.1
Flato, M.2
Fronsdal, C.3
Lichnerowicz, A.4
Sternheimer, D.5
-
15
-
-
0034349089
-
A path integral approach to the Kontsevich quantization formula
-
A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212 (2000) 591.
-
(2000)
Commun. Math. Phys.
, vol.212
, pp. 591
-
-
Cattaneo, A.S.1
Felder, G.2
-
16
-
-
33646049373
-
D-branes and deformation quantization
-
V. Schomerus, D-branes and deformation quantization, J. High Energy Phys. 06 (1999) 030.
-
(1999)
J. High Energy Phys.
, vol.6
, pp. 030
-
-
Schomerus, V.1
-
17
-
-
0007084601
-
String theory and noncommutative geometry
-
N. Seiberg and E. Witten, String theory and noncommutative geometry, J. High Energy Phys. 09 (1999) 032.
-
(1999)
J. High Energy Phys.
, vol.9
, pp. 032
-
-
Seiberg, N.1
Witten, E.2
-
18
-
-
84952911698
-
Quantum mechanics as a statistical theory
-
J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc.45(1949)99
-
(1949)
Proc. Cambridge Phil. Soc.
, vol.45
, pp. 99
-
-
Moyal, J.E.1
-
20
-
-
0040207118
-
Classical and quantum gravity in 1 + 1 dimensions, part II: The universal coverings
-
[gr-qc/9511081]
-
T. Klosch and T. Strobl, Classical and quantum gravity in 1 + 1 dimensions, part ii: the universal coverings, Class. and Quant. Grav. 13 (1996) 2395 [gr-qc/9511081].
-
(1996)
Class. and Quant. Grav.
, vol.13
, pp. 2395
-
-
Klosch, T.1
Strobl, T.2
-
21
-
-
0040952169
-
Classical and quantum gravity in 1 + 1 dimensions. III: Solutions of arbitrary topology and kinks in 1 + 1 gravity
-
[hep-th/9607226]
-
T. Klosch and T. Strobl, Classical and quantum gravity in 1 + 1 dimensions. iii: solutions of arbitrary topology and kinks in 1 + 1 gravity, Class. and Quant. Grav. 14 (1997) 1689 [hep-th/9607226].
-
(1997)
Class. and Quant. Grav.
, vol.14
, pp. 1689
-
-
Klosch, T.1
Strobl, T.2
-
22
-
-
0039246542
-
A global view of kinks in 1 + 1 gravity
-
[gr-qc/9707053]
-
T. Klosch and T. Strobl, A global view of kinks in 1 + 1 gravity, Phys. Rev. D 57 (1998) 1034 [gr-qc/9707053].
-
(1998)
Phys. Rev. D
, vol.57
, pp. 1034
-
-
Klosch, T.1
Strobl, T.2
-
26
-
-
0001497490
-
Diffeomorphisms versus nonabelian gauge transformations: An example of (1 + 1)-dimensional gravity
-
[hep-th/9401110]
-
P. Schaller and T. Strobl, Diffeomorphisms versus nonabelian gauge transformations: an example of (1 + 1)-dimensional gravity, Phys. Lett. B 337 (1994) 266 [hep-th/9401110].
-
(1994)
Phys. Lett. B
, vol.337
, pp. 266
-
-
Schaller, P.1
Strobl, T.2
-
28
-
-
23144439016
-
-
M. Bojowald, A. Kotov, and T. Strobl, in preparation
-
M. Bojowald, A. Kotov, and T. Strobl, in preparation.
-
-
-
-
30
-
-
84972531238
-
The local structure of poisson manifolds
-
A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983) 523.
-
(1983)
J. Diff. Geom.
, vol.18
, pp. 523
-
-
Weinstein, A.1
-
31
-
-
0001360773
-
The symplectic nature of fundamental groups of surfaces
-
W.M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984) 200
-
(1984)
Adv. Math.
, vol.54
, pp. 200
-
-
Goldman, W.M.1
-
32
-
-
23144464019
-
-
Lectures on the geometry of poisson manifolds Birkhäuser, Basel
-
I. Vaisman, Lectures on the geometry of poisson manifolds, Birkhäuser, Basel 1994.
-
(1994)
-
-
Vaisman, I.1
-
33
-
-
0038784426
-
Integrability of Lie brackets
-
M. Crainic and R.L. Fernandes, Integrability of Lie brackets, Ann. Math. 157 (2003) 575.
-
(2003)
Ann. Math.
, vol.157
, pp. 575
-
-
Crainic, M.1
Fernandes, R.L.2
-
35
-
-
0003203316
-
Geometric models for noncommutative algebras
-
American Mathematical Society, Providence
-
A. Cannas da Silva and A. Weinstein, Geometric models for noncommutative algebras, of Berkeley Mathematics Lecture Notes 10, American Mathematical Society, Providence 1999, available at http://www.math.berkeley.edu/~alanw/.
-
(1999)
Berkeley Mathematics Lecture Notes
, vol.10
-
-
Cannas Da Silva, A.1
Weinstein, A.2
|